
Workflow Linear Models I
Chris Howden Stanislaus Stadlmann

Table of contents

Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Simple Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Step 1: Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3
Step 2: Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Step 3: Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Step 4: Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Step 5: Interpret model parameters and reach conclusion . . . . . . . . . . . . . 15
Step 6: Report overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Analysis of Variance (ANOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Step 1: Pick suitable model via EDA . . . . . . . . . . . . . . . . . . . . . . . . 16
Step 2: Fit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Step 3: Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Step 4: Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Step 5: Interpret Model Parameters and reach a conclusion . . . . . . . . . . . 26
Step 6: Report overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Analysis of Covariance (ANCOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Step 1: Pick suitable model using EDA . . . . . . . . . . . . . . . . . . . . . . 29
Step 2: Fit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Step 3: Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Step 4: Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Step 5: Interpret Model Parameters and reach a conclusion . . . . . . . . . . . 37
Step 6: Report overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Linear Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Step 1: Pick a suitable model to fit to the data via EDA . . . . . . . . . . . . . 39
Step 2: Fit the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Step 3: Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Step 4: Goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Step 5: Model interpretation and conclusion . . . . . . . . . . . . . . . . . . . . 47
Step 6: Report overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1



set.seed(171974)
project <- "R Workshop - Linear Models"
version <- "1"
date <- format(Sys.Date(), "%d-%m-%Y")
title <- paste(project, " v", version, " ", date, sep = "")

The title of this project is R Workshop - Linear Models v1 23-05-2024. The slides for the
presentation accompanying this workflow can be found here.

In this workflow we focus on practical data analysis by presenting statistical workflows ap-
plicable in any software for four of the most common univariate analyses: linear regression,
ANOVA, ANCOVA, and repeated measures (a simple mixed model) – all assuming a normal
(gaussian) residual. These workflows can be easily extended to more complex models. The R
code used to create output is also included.

In order to re-run this .qmd file, either open it with RStudio and press “render” or, if you want
both the .pdf and the .html file to be produced, run the following code with this .qmd file being
present in your working directory: quarto::quarto_render("linear_modelsI_workflow.qmd",
output_format = "all")

Libraries

Before we delve into the content, it is necessary to load certain libraries. If you want to use
them, please install them beforehand with install.packages("library_name").

suppressPackageStartupMessages({
library("tibble")
library("magrittr")
library("ggplot2")
library("emmeans")
library("lme4")
library("lmerTest")
library("gglm")
library("patchwork")
library("writexl")

})

Warning: package 'emmeans' was built under R version 4.3.2

Warning: package 'writexl' was built under R version 4.3.2

2

https://sydney-informatics-hub.github.io/stats-resources/statistical_modelling.html#linear-models-1-linear-regression-anova-ancova-and-repeated-measures-a-simple-mixed-model


# GGplot theme
theme_set(theme_bw())

# No warnings
options(warn = -1)

Simple Linear Models

For this part, we assume that we have a dataset called dataset with two variables:

• response which is the response or target variable, i.e. the ‘variable of interest’.
• predictor1 which is the predictor variable, i.e. the variable that we are using to explain

the variance in response.

predictor1 <- rnorm(100, 6, 0.25)
variance <- rnorm(100, 0, 0.05)
response <- 1 + 0.5 * predictor1 + variance
dataset <- data.frame(response, predictor1)

Step 1: Exploratory Data Analysis

In this section, we first check for validity of assumptions prior to the formal model fitting
procedure using statistical diagnostics.

Linearity Assumption

A simple linear model assumes a linear relationship between our predictor(s) and the target
variable. In order to verify this, we create a scatterplot between predictor1 and response:

ggplot(data = dataset, aes(x = predictor1, y = response)) +
geom_point() +
labs(x = "predictor1 values", y = "response values")

3



3.8

4.0

4.2

5.7 6.0 6.3 6.6
predictor1 values

re
sp

on
se

 v
al

ue
s

As we can see, the response values rise nicely with increased values of predictor1, indicating
a linear relationship. Have a look at a graph, in which linearity is clearly not present:

tibble(x = rnorm(100), y = 1 + x^2 + rnorm(100, sd = 0.5)) %>%
ggplot(data = ., aes(x = x, y = y)) +
geom_point() +
labs(x = "predictor1 values", y = "response values")

4



0.0

2.5

5.0

7.5

10.0

−3 −2 −1 0 1 2
predictor1 values

re
sp

on
se

 v
al

ue
s

In this above graph, the response is actually dependent on 𝑥2, not 𝑥.

Assumption of Independence

Another assumption of linear models is that the observations are not dependent on each
other. One way to check this is to do a serial plot, which lines up all observations in order of
appearance. If any pattern can be detected, they are likely to not be independent.

ggplot(data = dataset, aes(
x = seq_along(response),
y = response

)) +
geom_point() +
labs(x = "index", y = "response values") +
ggplot(data = dataset, aes(
x = seq_along(response),
y = predictor1

)) +
geom_point() +
labs(x = "index", y = "predictor.linear1 values")

5



3.8

4.0

4.2

0 25 50 75 100
index

re
sp

on
se

 v
al

ue
s

5.7

6.0

6.3

6.6

0 25 50 75 100
index

pr
ed

ic
to

r.l
in

ea
r1

 v
al

ue
s

There are no visible patterns in the above graph. A problematic pattern could occur in time-
dependent observations, like below:

y0 <- 10
y_1 <- stats::filter(c(y0, runif(99, -0.5, 0.5)), 0.75, method = "recursive")
qplot(seq_along(y_1), y_1, geom = "point") +
labs(x = "index values", y = "response values")

Don't know how to automatically pick scale for object of type <ts>. Defaulting
to continuous.

6



0.0

2.5

5.0

7.5

10.0

0 25 50 75 100
index values

re
sp

on
se

 v
al

ue
s

In the graph above, we can clearly see how each observations depend on the ones that came
before.

Normality Assumption

The assumption of normality is technically only relevant for residuals, which can only be
obtained post-model fit. But it’s still a good idea to check normality of the response variable
, since they are related.

First, we create a histogram of all response observations, and have a look at the predictor1
values as well:

ggplot(data = dataset, aes(x = response, y = after_stat(density))) +
geom_histogram(fill = "cornflowerblue", bins = 15, col = "black") +
ggplot(data = dataset, aes(x = predictor1, y = after_stat(density))) +
geom_histogram(fill = "cornflowerblue", bins = 15, col = "black")

7



0

1

2

3

3.8 4.0 4.2 4.4
response

de
ns

ity

0.0

0.5

1.0

1.5

2.0

5.50 5.75 6.00 6.25 6.50
predictor1

de
ns

ity

What we’re looking for here is a roughly symmetric distributions with a single peak.

Outlier checking

This is a also very poorly understood assumption. We want a model represent the bulk of the
data. We don’t want it biased towards 1 or 2 outlying influential points. Just like checking
the normality assumption we can only test this for sure once we have fit a model. However, it
is always worth looking at all our data to see if there are any outliers we might need to deal
with. The best way to do this is via histograms, re-using the one created above.

Step 2: Model fitting

After a sucessful Exploratory Data Analysis, we use lm() to fit a linear model.

model <- lm(response ~ predictor1, data = dataset)

Step 3: Model diagnostics

In order to gauge the model fit, we first visually display the residuals. Residuals are variability
in our response that cannot be explained by the model. Visually, they appear as the distance
between the fitted line and the observed datapoints. Have a look:

8



ggplot(data = dataset, aes(x = predictor1, y = response)) +
geom_point() +
geom_line(data = NULL, aes(x = predictor1, y = fitted(model)), col = "firebrick") +
labs(x = "predictor1 values", y = "response values")

3.8

4.0

4.2

5.7 6.0 6.3 6.6
predictor1 values

re
sp

on
se

 v
al

ue
s

We are looking for a few things here: Firstly, that the deviation from the line is roughly equal
across the spread of predictor1. Secondly, that the residuals are normally distributed. We
can also display the deviations from the line in a histogram including a kernel density graph,
like so:

model_res <- residuals(model)
ggplot(data = NULL, aes(x = model_res, y = after_stat(density))) +
geom_histogram(fill = "cornflowerblue", bins = 15, col = "black") +
labs(x = "predictor1 values", y = "density") +
ggplot(data = NULL, aes(x = model_res, y = after_stat(density))) +
geom_density(fill = "firebrick") +
geom_rug(aes(y = NULL)) +
labs(x = "predictor1 values", y = "density")

9



0.0

2.5

5.0

7.5

10.0

−0.1 0.0 0.1
predictor1 values

de
ns

ity

0

2

4

6

8

−0.1 0.0 0.1
predictor1 values

de
ns

ity

Using a histogram it is often easier to spot irregularities. In this case, using the graph above
and below we can confirm that the residuals are normally and equally distributed across the
line.

Other diagnostic plots can be produced with plot(model_object_name). The gglm package
produces the same plots but using the graphing package ggplot2, the plots of which look a
little more up-to-date:

gglm(model, theme = theme_bw()) +
ggplot(data = model) +
stat_cooks_obs() +
geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))

10



−0.1

0.0

0.1

3.8 3.9 4.0 4.1 4.2 4.3
Fitted values

R
es

id
ua

ls
Residuals vs Fitted

−2

0

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Normal Q−Q

0.5

1.0

1.5

3.8 3.9 4.0 4.1 4.2 4.3
Fitted values

|S
ta

nd
ar

di
ze

d 
re

si
du

al
s| Scale−Location

−2

0

2

0.02 0.04 0.06
Leverage

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Residual vs. Leverage

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Observation Number

C
oo

k'
s 

D
is

ta
nc

e

Cook's Distance

The following plots are produced above:

1. Residuals vs Fitted: This plot displays the model residuals vs the fitted values. We are
looking to confirm a linear relationships between predictor variables and the outcome
variable here.

2. Normal Q-Q plot: This plot displays empirical normal distribution quantiles versus the
theoretical ones. This plot seeks to confirm the normal distribution of residuals, as we

11



did before with the histogram.
3. Scale-Location: This plot shows whether residuals are equally spread along the range of

predictors. A more or less horizontal line is what we’re looking for here.
4. Residuals vs Leverage: In this plot, we’re identifying influental observations. If one

observation is unreasonably far to the right, it indicates an influental outlier.
5. Cook’s distance plot: This plot shows Cook’s distance numbers for each observation. R

uses a cutoff of 0.5, so observations above that cut-off could indicate a problem.

All of these plots look ideal.

Step 4: Goodness of fit

In this part, we want to check the goodness-of-fit of the model. Above, we already displayed
the fitted values vs the residuals of the model. It also makes sense to compare the values of
each predictor (explanatory variable), as well as the response with the residuals, to make sure
the linearity assumption holds for each variable that we’re predicting with. In our case, we
only have one predictor variable.

# Plot 1
ggplot(dataset, aes(x = predictor1, y = residuals(model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
labs(x = "predictor1", y = "model residuals", title = "predictor1 vs. residuals") +

# Plot 2
ggplot(dataset, aes(x = response, y = residuals(model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
labs(x = "response", y = "model residuals", title = "response vs. residuals") +

# Plot 3
ggplot(dataset, aes(x = predict(model), y = residuals(model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red", linetype = "dashed") +
labs(x = "fitted values", y = "model residuals", title = "fitted values vs residuals") +
plot_layout(ncol = 2)

12



−0.1

0.0

0.1

5.7 6.0 6.3 6.6
predictor1

m
od

el
 r

es
id

ua
ls

predictor1 vs. residuals

−0.1

0.0

0.1

3.8 4.0 4.2
response

m
od

el
 r

es
id

ua
ls

response vs. residuals

−0.1

0.0

0.1

3.8 3.9 4.0 4.1 4.2 4.3
fitted values

m
od

el
 r

es
id

ua
ls

fitted values vs residuals

As we can see, the linearity assumption holds nicely. Let’s also check the response vs predicted
plot:

ggplot(dataset, aes(x = response, y = predict(model))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, col = "red") +
labs(y = "predicted")

`geom_smooth()` using formula = 'y ~ x'

13



3.8

3.9

4.0

4.1

4.2

4.3

3.8 4.0 4.2
response

pr
ed

ic
te

d

This plot is a good visual representation of model fit. If the response is being exactly predicted
than we expect it to fall along the 1:1 line.

Now, we look at the summary output of our linear model:

summary(model)

Call:
lm(formula = response ~ predictor1, data = dataset)

Residuals:
Min 1Q Median 3Q Max

-0.115978 -0.030085 -0.001874 0.028932 0.161342

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.94554 0.11584 8.162 1.14e-12 ***
predictor1 0.50825 0.01927 26.370 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04691 on 98 degrees of freedom
Multiple R-squared: 0.8765, Adjusted R-squared: 0.8752

14



F-statistic: 695.4 on 1 and 98 DF, p-value: < 2.2e-16

A model summary output has three parts:

1. Residual statistics (empirical quantiles)
2. Coefficient statistics
3. Model statistics

We already looked at the residuals a lot, so we’re starting with the second section here. Each
predictor and the intercept has one line in the table, which holds information on both the
coefficient estimate and a significance test. A p value smaller than 0.05 indicates that we see
a significant partial correlation between that predictor and the response variable. In this case,
we have one predictor, the coefficient of which is significantly different from 0. It’s also a good
idea to look at the confidence interval of coefficients:

confint(model)

2.5 % 97.5 %
(Intercept) 0.7156560 1.1754214
predictor1 0.4700031 0.5465012

In the third section of the summary output, we can see the 𝑅2, which ranges from 0 to 1 and
gives an indication on much variance of the response variable is explained by the predictor
variables. The last line is important, as it tests for significance of the entire model.

Step 5: Interpret model parameters and reach conclusion

In this case, a p value of less than 0.05 indicates that the model is significantly different from 0
(no model). We can therefore conclude that the model is significant. Refer to the presentation
here for more detail.

Step 6: Report overall conclusion

To interpret the paramters, we use the fitted regression coefficient. In our case, using the
model table above, we can say (in this case we use “fake” predictor and response meanings):

There is strong evidence to show that predictor1 influences response (p<2e-16),
with each 1 unit of increase in predictor1 adding between 0.47-0.54 units of response
(95% CI). This effect on weight has been estimated very accurately [as 95% CI is
quite narrow].

The model is a good fit to the data with an 𝑅2 = 88%. There were no outliers or
unexplained structure. The error was normal.

15

https://sydney-informatics-hub.github.io/stats-resources/statistical_modelling.html#linear-models-1-linear-regression-anova-ancova-and-repeated-measures-a-simple-mixed-model


Analysis of Variance (ANOVA)

In this section, we have a data.frame object with two variables:

• treatment: The treatment variable (binary)
• response: the response variable (metric)

set.seed(171975)
variance <- rnorm(100, 0, 0.05)
b0.control <- 3
b1.treatment <- 0.5

data1 <- tibble(
treatment = factor(c(rep("Control", 50), rep("Treatment", 50))),
response = b0.control + b1.treatment*ifelse(treatment=="Treatment", 1, 0) + variance

)

We assume that the response variable is dependent on the treatment. Due to the binary nature
of treatment, we are fitting an Analysis of Variance (a subtype of linear model).

Step 1: Pick suitable model via EDA

First, let’s visually display both variables using boxplots (as we see in the powerpoint):

ggplot(data1, aes(x = treatment, y = response)) +
# geom_violin(alpha=0.4, position = position_dodge(width = .75),size=1,color="black") +
geom_point(

shape = 21,
size = 2,
position = position_jitter(),
color = "black",
alpha = 1

) +
labs(x = "Treatment", y = "Response") +
ggplot(data1, aes(x = treatment, y = response)) +
# geom_violin(alpha=0.4, position = position_dodge(width = .75),size=1,color="black") +
geom_boxplot(

notch = FALSE,
outlier.size = -1,
color = "black",
lwd = 1.2,
alpha = 0.7

16



) +
labs(x = "Treatment", y = "Response")

3.0

3.2

3.4

3.6

Control Treatment
Treatment

R
es

po
ns

e

3.0

3.2

3.4

3.6

Control Treatment
Treatment

R
es

po
ns

e

As we can see above, all observations are clearly separated, indicating a strong treatment
effect.

Note: The “jitter” creates a nice visual scatter, but is purely for exploration. It should be
removed in the final publication.

Check for assumptions

First, we check for independence using a serial plot:

ggplot(data = data1, aes(
x = seq_along(response),
y = response

)) +
geom_point() +
labs(x = "index", y = "response values")

17



3.0

3.2

3.4

3.6

0 25 50 75 100
index

re
sp

on
se

 v
al

ue
s

We see the separation of treatment values here, but within those there doesn’t appear to be
any (auto) correlation. Let’s check normality next:

ggplot(data1, aes(
x = response,
y = after_stat(density)

)) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Full dataset") +
ggplot(data1, aes(
x = response,
y = after_stat(density)

)) +
facet_wrap(~ treatment) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Divided by treatment") +
plot_layout(ncol = 1)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

18



0

2

4

6

3.0 3.2 3.4 3.6
response

de
ns

ity
Full dataset

Control Treatment

3.0 3.2 3.4 3.6 3.0 3.2 3.4 3.6
0.0
2.5
5.0
7.5

10.0
12.5

response

de
ns

ity

Divided by treatment

We can see clear separation here as well, otherwise normality. If we only looked in the above
plot, we would have assumed non-normality. This is a great example of how we shouldn’t
worry about violations of normality in the dependent variable too much, since the residuals
have to be normally distributed, not the outcome.

Outliers

The combined data (as seen above) exhibits a clear bimodal distribution and deviates signif-
icantly from normality. Thus, we need to address whether this poses a problem. However,
the error distribution should be normal, not the response, and upon examination, the errors
around the mean of each treatment appear to be approximately normal.

Step 2: Fit model

There are two ways to fit an ANOVA in R. You can either use the lm() function as above,
or the aov() function. In this case, I’ll use the aov() function, mainly because I prefer the
summary output.

anova_model <- aov(response ~ treatment, data = data1)

19



Step 3: Model diagnostics

gglm(anova_model, theme = theme_bw()) +
ggplot(data = anova_model) +
stat_cooks_obs() +
geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))

20



−0.10

−0.05

0.00

0.05

0.10

3.0 3.1 3.2 3.3 3.4 3.5
Fitted values

R
es

id
ua

ls
Residuals vs Fitted

−2

−1

0

1

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Normal Q−Q

0.4

0.8

1.2

1.6

3.0 3.1 3.2 3.3 3.4 3.5
Fitted values

|S
ta

nd
ar

di
ze

d 
re

si
du

al
s| Scale−Location

−7.5

−5.0

−2.5

0.0

2.5

−0.025 0.000 0.025 0.050
Leverage

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Residual vs. Leverage

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Observation Number

C
oo

k'
s 

D
is

ta
nc

e

Cook's Distance

The model diagnostics plot is less informative than with the linear model, due to the binary
nature of the treatment variable, but we can still observe interesting trends, like with the QQ
plot for example.

Let’s investigate the residuals a bit more:

21



ggplot(data1, aes(
x = residuals(anova_model),
y = after_stat(density)

)) +
labs(x = "Model residuals") +
geom_histogram(fill = "cornflowerblue", col = "black") +
ggplot(data1, aes(
x = residuals(anova_model),
y = after_stat(density)

)) +
geom_density(fill = "firebrick") +
geom_rug(aes(y = NULL)) +
labs(x = "Model residuals")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0.0

2.5

5.0

7.5

10.0

−0.15 −0.10 −0.05 0.00 0.05 0.10
Model residuals

de
ns

ity

0

2

4

6

8

−0.10 −0.05 0.00 0.05 0.10
Model residuals

de
ns

ity

This time, we cannot observe large differences betwen the residuals of the both treatment
effects, which indicates that the differences are nicely taken into account.

Step 4: Goodness of Fit

Let’s have another look at the Residuals vs Fitted plot:

22



ggplot(data1, aes(x = treatment, y = residuals(anova_model))) +
# geom_violin(alpha=0.4, position = position_dodge(width = .75),size=1,color="black") +
geom_boxplot(

notch = FALSE,
outlier.size = -1,
color = "black",
lwd = 1.2,
alpha = 0.7

) +
geom_point(

shape = 21,
size = 2,
position = position_jitter(),
color = "black",
alpha = 1

) +
labs(x = "Treatment", y = "Residuals")

−0.10

−0.05

0.00

0.05

0.10

Control Treatment
Treatment

R
es

id
ua

ls

This time we can again see that the residuals are nicely spread around 0 for both treatment
and control.

Another great plot is Fitted vs Residuals as as well as Response vs Residuals :

23



ggplot(data1, aes(
x = predict(anova_model),
y = residuals(anova_model),
col = treatment)) +
geom_point() +
labs(x = "Predictions", y = "Residuals") +
geom_hline(yintercept = 0, col = "red") +
theme(legend.position = "none") +
# Plot 2
ggplot(data1, aes(
x = response,
y = residuals(anova_model),
col = treatment)) +
geom_point() +
labs(x = "Predictions", y = "Residuals") +
geom_hline(yintercept = 0, col = "red")

−0.10

−0.05

0.00

0.05

0.10

3.0 3.1 3.2 3.3 3.4 3.5
Predictions

R
es

id
ua

ls

−0.10

−0.05

0.00

0.05

0.10

3.0 3.2 3.4 3.6
Predictions

R
es

id
ua

ls treatment

Control

Treatment

We expect the ‘lines’ of data rather than a random ‘cloud’ of data which we saw in the
regression. This is because rather than a range of predictions for each different value of the
predictor we only get 1 prediction for control and another for treatment, hence 2 vertical lines
in the upper chart.

Let’s also check the response vs. predictions:

24



ggplot(data1, aes(x = response, y = predict(anova_model))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, col = "red") +
labs(y = "predicted")

`geom_smooth()` using formula = 'y ~ x'

3.0

3.2

3.4

3.6

3.0 3.2 3.4 3.6
response

pr
ed

ic
te

d

To check the goodness-of-fit, we have a look at the model summary output:

summary(anova_model)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 1 6.481 6.481 2400 <2e-16 ***
Residuals 98 0.265 0.003
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case, we purely observe the significance of our treatment effect, which is seen in the
first line of the Anova-Output. A p value of less than 0.05 indicates a significant difference
between the categories of the treatment variable (of which there are only two).

25



Step 5: Interpret Model Parameters and reach a conclusion

In order to find out how large the difference is, we need to convert the anova object back to a
linear model like so:

coef(lm(anova_model))

(Intercept) treatmentTreatment
3.0017546 0.5091524

confint(lm(anova_model))

2.5 % 97.5 %
(Intercept) 2.9871714 3.0163378
treatmentTreatment 0.4885287 0.5297761

We can now see that the average difference of response between the treatment and control
effect is 0.509. Since our effect is significantly different from 0, we can now conclude that our
treatment is successful.

Refer to the presentation here for more detail.

Step 6: Report overall conclusion

You can use the following sentence (we again assume a “fake” meaning):

There is strong evidence to show that the treatment influences response (p<2e-16).
It increases the response by between 0.49-0.53 units (95% CI), from an average
of approximately 3 (95% CI=2.98-3.01). This effect on the response has been
estimated very accurately [as 95% CI is quite narrow].

The model is a good fit to the data with an R2=97%. There were no outliers or
unexplained structure. The error was normal”

26

https://sydney-informatics-hub.github.io/stats-resources/statistical_modelling.html#linear-models-1-linear-regression-anova-ancova-and-repeated-measures-a-simple-mixed-model


Analysis of Covariance (ANCOVA)

In ANCOVA model situations, we are interested in a treatment effect like in ANOVA, but we
also want to account for other covariates. This could, for example, be the age of clinical trial
candidates.

Let’s create some data first (I collapsed this element because it’s a lot of code):

set.seed(171974)
predictor.linear1 <- rnorm(100, 6, 0.25)
variance <- rnorm(100, 0, 0.05)

treatment <- factor(c(rep("Control", 50), rep("Treatment", 50)))

# Model 1) if no difference between groups i.e. lines are parrallel
b0.control <- 1
b0.treatment <- 0.5
b1.control <- 1
b1.treatment <- 0

data2 <- data.frame()[1:100, ]
data2$treatment <- treatment
data2$predictor.linear1 <- predictor.linear1
data2$response <- b0.control +

b1.control*predictor.linear1 +
b0.treatment*ifelse(data2$treatment=="Treatment", 1, 0) +
b1.treatment*ifelse(data2$treatment=="Treatment", 1, 0)*predictor.linear1 +
variance

row.names(data2) <- NULL

# Model 2) if difference between groups i.e. lines aren't parallel
b0.control <- 1
b0.treatment <- -8.5
b1.control <- 1
b1.treatment <- 1.5

data3 <- data.frame()[1:100, ]
data3$treatment <- treatment
data3$predictor.linear1 <- predictor.linear1
data3$response <- b0.control +

b1.control*predictor.linear1 +
b0.treatment*ifelse(data3$treatment=="Treatment", 1, 0) +

27



b1.treatment*ifelse(data3$treatment=="Treatment", 1, 0)*predictor.linear1 +
variance

row.names(data3) <- NULL

We now have three covariates in a data.frame object called data2, and the same in a different
object called data3:

• treatment: A categorical variable depicting the treatment/control groups
• predictor.linear1: Our numeric predictor
• response: The numeric response

Let’s look at our datasets graphically:

d2graph <- ggplot(data2, aes(x = predictor.linear1, y = response, col = treatment)) +
geom_point() +
guides(col = "none") +
labs(x = "predictor.linear1 values", title = "Scatterplot data2")

d3graph <- ggplot(data3, aes(x = predictor.linear1, y = response, col = treatment)) +
geom_point() +
labs(x = "predictor.linear1 values", title = "Scatterplot data3")

d2graph + d3graph

6.5

7.0

7.5

8.0

5.7 6.0 6.3 6.6
predictor.linear1 values

re
sp

on
se

Scatterplot data2

7

8

9

5.7 6.0 6.3 6.6
predictor.linear1 values

re
sp

on
se treatment

Control

Treatment

Scatterplot data3

We can now see the relationship between predictor.linear1 and response in two different
scenarios (data2 vs data3). The difference is that on the left graph, the differently coloured

28



points have a parallel increase, whereas on the right graph the slopes of the increase between
the points is also different. We will be further using data3, because it has a more complex
(and interesting) model structure.

Step 1: Pick suitable model using EDA

From the (right) graph above, we can see that there is a binary treatment effect as well as a
linear predictor called predictor.linear1. This is a classic ANCOVA scenario.

Model assumptions

First, let’s check whether the response observations seem to be (auto) correlated using a serial
plot:

ggplot(data = data3, aes(
x = seq_along(response),
y = response,
col = treatment

)) +
geom_point() +
labs(x = "index", y = "response values") +
ggplot(data = data3, aes(
x = seq_along(response),
y = predictor.linear1,
col = treatment

)) +
geom_point() +
labs(x = "index", y = "predictor.linear1 values") +
plot_layout(guides = "collect")

29



7

8

9

0 25 50 75 100
index

re
sp

on
se

 v
al

ue
s

5.7

6.0

6.3

6.6

0 25 50 75 100
index

pr
ed

ic
to

r.l
in

ea
r1

 v
al

ue
s

treatment

Control

Treatment

No pattern visible, except the one created by the treatment effect, which we will later account
for in the model. Next, we check for normality and look for apparent outliers.

ggplot(data3, aes(
x = response,
y = after_stat(density)

)) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Full dataset") +
ggplot(data3, aes(
x = response,
y = after_stat(density)

)) +
facet_wrap(~ treatment) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Divided by treatment") +
plot_layout(ncol = 1)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

30



0.0

0.5

1.0

7 8 9
response

de
ns

ity
Full dataset

Control Treatment

7 8 9 7 8 9
0.0

0.5

1.0

1.5

response

de
ns

ity

Divided by treatment

We can see that there are visible differences in the response variable broken up by the treat-
ment effect, but this is not concerning, both histograms still appear mostly normal, just with
differences in the variance and location of the distribution. This is a great example of how we
shouldn’t worry about violations of normality in the dependent variable too much, since the
residuals have to be normally distributed, not the outcome.

Step 2: Fit model

Let’s fit the model next. Due to the different slopes in the predictor variable in differ-
ent treatment effects, it is required that we fit an interaction between treatment and
predictor.linear1:

ancova_model <- aov(
response ~ treatment + predictor.linear1 +
treatment * predictor.linear1,
data = data3

)

Step 3: Model diagnostics

Our classic five diagnostic plots can be created first:

31



gglm(ancova_model, theme = theme_bw()) +
ggplot(data = ancova_model) +
stat_cooks_obs() +
geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))

−0.1

0.0

0.1

7 8 9
Fitted values

R
es

id
ua

ls

Residuals vs Fitted

−2

0

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Normal Q−Q

0.0

0.5

1.0

1.5

2.0

7 8 9
Fitted values

|S
ta

nd
ar

di
ze

d 
re

si
du

al
s| Scale−Location

−2

0

2

0.03 0.06 0.09
Leverage

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Residual vs. Leverage

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Observation Number

C
oo

k'
s 

D
is

ta
nc

e

Cook's Distance

32



All of these plots look very well behaved. We can’t detect any visible pattern in the plots,
neither can we find any observations that are too influental.

Next, let’s have a look at the residuals, and whether there is still a visible pattern:

ggplot(data3, aes(
x = residuals(ancova_model),
y = after_stat(density)

)) +
labs(x = "Model residuals") +
geom_histogram(col = "black", fill = "cornflowerblue") +
ggplot(data3, aes(
x = residuals(ancova_model),
y = after_stat(density)

)) +
geom_density(fill = "firebrick") +
geom_rug(aes(y = NULL)) +
labs(x = "Model residuals")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

3

6

9

−0.1 0.0 0.1
Model residuals

de
ns

ity

0

2

4

6

8

−0.1 0.0 0.1
Model residuals

de
ns

ity

The residuals look very nicely behaved, no non-normality can be detected.

33



Step 4: Goodness-of-fit

Let’s have another look at the Residuals vs Fitted plot, as well as Residuals vs response:

ggplot(data3, aes(
x = predict(ancova_model),
y = residuals(ancova_model),
col = treatment)) +
geom_point() +
geom_smooth(se = FALSE, method = "lm") +
labs(x = "Predictions", y = "Fitted values")

`geom_smooth()` using formula = 'y ~ x'

−0.1

0.0

0.1

7 8 9
Predictions

F
itt

ed
 v

al
ue

s

treatment

Control

Treatment

ggplot(data3, aes(
x = predictor.linear1,
y = residuals(ancova_model),
col = treatment)) +
geom_point() +
geom_smooth(se = FALSE, method = "lm") +
labs(x = "predictor.linear1 values", y = "Fitted values")

`geom_smooth()` using formula = 'y ~ x'

34



−0.1

0.0

0.1

5.7 6.0 6.3 6.6
predictor.linear1 values

F
itt

ed
 v

al
ue

s

treatment

Control

Treatment

Even separated by the treatment effect, no pattern is apparent. Had we forgotten to fit an
interaction effect, we would still see some remaining slopes or strange deviations from the
line.

Let’s dig deeper into the residuals:

ggplot(data3, aes(x = predict(ancova_model), y = residuals(ancova_model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red") +
labs(x = "predicted values", y = "residuals") +
ggplot(data3, aes(x = response, y = residuals(ancova_model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red") +
labs(x = "predicted values", y = "residuals")

35



−0.1

0.0

0.1

7 8 9
predicted values

re
si

du
al

s

−0.1

0.0

0.1

7 8 9
predicted values

re
si

du
al

s

No evidence of outliers, or unexplained structure or non linearity.

We can also compare the predictions vs. the response:

ggplot(data3, aes(x = response, y = predict(ancova_model))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, col = "red") +
labs(x = "response", y = "model predictions")

`geom_smooth()` using formula = 'y ~ x'

36



7

8

9

7 8 9
response

m
od

el
 p

re
di

ct
io

ns

Let’s check the summary output next:

summary(ancova_model)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 1 9.809 9.809 4412 <2e-16 ***
predictor.linear1 1 19.388 19.388 8721 <2e-16 ***
treatment:predictor.linear1 1 3.125 3.125 1406 <2e-16 ***
Residuals 96 0.213 0.002
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can see, all three fitted effects are significantly different from zero, indicating a successful
treatment effect.

Step 5: Interpret Model Parameters and reach a conclusion

If we want to know how large our coefficiencts are, we need to convert the model back to a
“linear model”:

coef(lm(ancova_model))

37



(Intercept) treatmentTreatment
0.8589649 -8.3203390

predictor.linear1 treatmentTreatment:predictor.linear1
1.0222017 1.4711692

confint(lm(ancova_model))

2.5 % 97.5 %
(Intercept) 0.5150596 1.202870
treatmentTreatment -8.7882616 -7.852416
predictor.linear1 0.9646711 1.079732
treatmentTreatment:predictor.linear1 1.3932757 1.549063

The treatment effect seems to be negative in this case, but it can only be interpreted jointly
with the interaction. As such, while the treatment effect by itself is negative, the slope of
it’s interaction with predictor.linear1 is positive, so the values do rise above the control group
quite quickly. This becomes apparent in the scatterplot shown in the first part of this section
(EDA).

This does indicate that the treatment effect strongly interacts with the predictor.linear1
variable.

Refer to the presentation here for more detail.

Step 6: Report overall conclusion

You can again use the following sentences (assuming a fake application):

There is strong evidence to show that predictor.linear1 impacts the response (p<2e-
16), with each unit of predictor.linear1 adding between 0.96-1.08 units of response
(95% CI).

There is strong evidence that the treatment have a positive effect on the impact
of predictor.linear1 (p<2e-16), increasing its effect by between 1.39-1.55 (95% CI),
for a total average effect of 2.5 units of response increase for each unit increase of
predictor.linear1.

This effect of predictor.linear1 on response has been estimated very accurately [as
95% CI is quite narrow].

The model is a good fit to the data with an R2=99%. There were no outliers or
unexplained structure. The error was normal

38

https://sydney-informatics-hub.github.io/stats-resources/statistical_modelling.html#linear-models-1-linear-regression-anova-ancova-and-repeated-measures-a-simple-mixed-model


Linear Mixed Models

We use Mixed Models when we cannot assume that all observations are independently dis-
tributed, due to an error term structure that we need to take into account. This could be due
to repeated measures where we take a measurement multiple times for each unit of observation
(and therefore each unit’s measurements are correlated) or a “nested structure”, like students
in a classroom.

Let’s create some data first to illustrate the example:

set.seed(171974)
variance <- rnorm(100, 0, 250) # as within person variance is 100

id <- rep(c(1:10), 2, each=5)
treatment <- factor(c(rep("Control", 50), rep("Treatment", 50)))

b0.control.average <- 4000
b0.control.0 <- rnorm(10, b0.control.average, 1500) # as range 1000-9000
b0.control <- rep(b0.control.0, 2, each=5)
b1.treatment <- 500

data6 <- data.frame()[1:100, ]
data6$id <- as.factor(id)
data6$treatment <- treatment
data6$response <- b0.control + b1.treatment*ifelse(data6$treatment=="Treatment", 1, 0) + variance
data6 <- data6[order(data6$id, data6$treatment),]
row.names(data6) <- NULL
data6$b0.control <- b0.control

writexl::write_xlsx(x = data6, path = "lm1_dataset_linear_mixed_models.xlsx")

In our new data.frame, we now have a new variable id, which specifies the unit of observation.
This is “repeated”, as we take each unit of observation multiple times. Our variables are thus:

• id: ID of the unit of observation
• b0.control: This is our numeric predictor variable, which is unique for each unit of

observation but not for each repeated measure.
• treatment: This contains information about the treatment/control groups
• response: Our target variable

Step 1: Pick a suitable model to fit to the data via EDA

Let’s first graphically display the dataset:

39



ggplot(data6, aes(
x = id,
y = response,
col = treatment
)) +
geom_point() +
labs(x = "id")

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10
id

re
sp

on
se treatment

Control

Treatment

In this graph, we can both see a horizontal trend between b0.control and response as well
as the multiple repetitions scattered vertically. This is a perfect mixed model scenario. We
can see that the observations are correlated within the id variable.

Check assumptions

The first assumption we’ll check is the we already know will be broken: independence. A serial
plot helps to see this:

ggplot(data = data6, aes(
x = seq_along(response),
y = response

)) +
geom_point() +
labs(x = "index values", y = "response values")

40



0

2000

4000

6000

0 25 50 75 100
index values

re
sp

on
se

 v
al

ue
s

We can definitely see the repetition pattern here. Let’s check normality next:

ggplot(data6, aes(
x = response,
y = after_stat(density)

)) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Full dataset") +
ggplot(data6, aes(
x = response,
y = after_stat(density)

)) +
facet_wrap(~ treatment) +
geom_histogram(fill = "cornflowerblue", col = "black") +
geom_density(aes(fill = NULL)) +
labs(title = "Divided by treatment") +
plot_layout(ncol = 1)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

41



0e+00
1e−04
2e−04
3e−04
4e−04

0 2000 4000 6000
response

de
ns

ity
Full dataset

Control Treatment

0 2000 4000 6000 0 2000 4000 6000
0e+00

2e−04

4e−04

6e−04

response

de
ns

ity

Divided by treatment

We see a slight right-skew in both treatment and control response groups. This is nothing
to worry about yet, however, since the residuals need to be normally distributed, not the
response. This is a great example of how we shouldn’t worry about violations of normality in
the dependent variable too much, since the residuals have to be normally distributed, not the
outcome.

Step 2: Fit the Model

Now, we fit our mixed model. In general, mixed models have a slightly different notation
as linear “unmixed” models, since we have to distinguish between “fixed” (uncorrelated) and
“random” (correlated) effects. The variable which “nests” the observation is our random ef-
fect.

mixed_model <- lmer(response ~ treatment + (1 | id), data = data6)

Step 3: Model diagnostics

Let’s do our classic 5-graph model diagnostics first:

gglm(mixed_model, theme = theme_bw()) +
ggplot(data = mixed_model) +
stat_cooks_obs() +

42



geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))

−300

0

300

600

1000 2000 3000 4000 5000
Fitted values

R
es

id
ua

ls

Residuals vs Fitted

−2

−1

0

1

2

−2 −1 0 1 2
Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Normal Q−Q

0.0

0.5

1.0

1.5

1000 2000 3000 4000 5000
Fitted values

|S
ta

nd
ar

di
ze

d 
re

si
du

al
s| Scale−Location

−2

−1

0

1

2

0.06 0.08 0.10 0.12 0.14
Leverage

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Residual vs. Leverage

0.0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100
Observation Number

C
oo

k'
s 

D
is

ta
nc

e

Cook's Distance

Our graphs look pretty good. There are no influental observations that we can see.

Let’s have a closer look at the residuals, to see whether there is any pattern left:

43



ggplot(data6, aes(
x = residuals(mixed_model),
y = after_stat(density)

)) +
labs(x = "Model residuals") +
geom_histogram(col = "black", fill = "cornflowerblue") +
ggplot(data6, aes(
x = residuals(mixed_model),
y = after_stat(density)

)) +
geom_density(fill = "firebrick") +
geom_rug(aes(y = NULL)) +
labs(x = "Model residuals")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0.000

0.001

0.002

−300 0 300 600
Model residuals

de
ns

ity

0.0000

0.0005

0.0010

0.0015

−300 0 300 600
Model residuals

de
ns

ity

The residuals seem to be greatly behaved, and pretty normal now (especially in comparison
to the response graph from before).

Step 4: Goodness of fit

Outliers and unexpected structure or nonlinearity

Let’s have another look at the residuals vs fitted plot as well as response vs residuals.

44



ggplot(data6, aes(
x = predict(mixed_model),
y = residuals(mixed_model),
col = treatment)) +
geom_point() +
geom_smooth(se = FALSE, method = "lm") +
labs(x = "predictions", y = "Fitted values") +
theme(legend.position = "none") +
ggplot(data6, aes(
x = response,
y = residuals(mixed_model),
col = treatment)) +
geom_point() +
labs(x = "response values", y = "Fitted values")

`geom_smooth()` using formula = 'y ~ x'

−300

0

300

600

10002000300040005000
predictions

F
itt

ed
 v

al
ue

s

−300

0

300

600

0 2000 4000 6000
response values

F
itt

ed
 v

al
ue

s

treatment

Control

Treatment

There is some remaining structure in the control and treatment slopes, however this is likely
due to this graph not having accounted for the individual repetitions.

As we can see in the plot above, there is no evidence of outliers, unexplained structure or
non linearity. Notice the predicted scores are falling out into 20 discrete vertical patterns of 5
points. This is expected since we had 5 repeated measures for 10 patients over 2 treatments.

Let’s also have a look at the response vs predicted graph:

45



ggplot(data6, aes(x = response, y = predict(mixed_model)), col = id) +
geom_point() +
labs(y = "predicted values") +
geom_smooth(method = "lm", se = FALSE, col = "red")

`geom_smooth()` using formula = 'y ~ x'

0

2000

4000

6000

0 2000 4000 6000
response

pr
ed

ic
te

d 
va

lu
es

We should also check response vs residuals as well as predict vs. residuals:

ggplot(data6, aes(x = predict(mixed_model), y = residuals(mixed_model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red") +
labs(y = "residuals", x = "predicted") +
ggplot(data6, aes(x = response, y = residuals(mixed_model))) +
geom_point() +
geom_hline(yintercept = 0, col = "red") +
labs(y = "residuals") +
plot_layout(guides = "collect")

46



−300

0

300

600

1000 2000 3000 4000 5000
predicted

re
si

du
al

s

−300

0

300

600

0 2000 4000 6000
response

re
si

du
al

s

After assessing the model diagnostics, let’s look at the summary output.

Step 5: Model interpretation and conclusion

summary(mixed_model)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: response ~ treatment + (1 | id)

Data: data6

REML criterion at convergence: 1415.9

Scaled residuals:
Min 1Q Median 3Q Max

-2.00798 -0.64360 -0.01528 0.64054 2.39706

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 2178377 1475.9
Residual 59105 243.1
Number of obs: 100, groups: id, 10

47



Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 3398.202 467.996 9.049 7.261 4.63e-05 ***
treatmentTreatment 563.738 48.623 89.000 11.594 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr)

trtmntTrtmn -0.052

As we can see from the above output, we have a significant treatment effect. The control
variable b0.control, though, is not significantly different from 0.

Refer to the presentation here for more detail.

Step 6: Report overall conclusion

With the model output above, we can now make a conclusion. In order to do so, let’s first also
calculate the confidence intervals of each estimates:

confint(mixed_model)

Computing profile confidence intervals ...

2.5 % 97.5 %
.sig01 953.2940 2340.1219
.sigma 210.3224 281.8879
(Intercept) 2437.6856 4358.7182
treatmentTreatment 467.9490 659.5266

The following statement can now be made:

There is strong evidence to show that the treatment influences the response (p<2e-
16). It increases # of the response by 0.32 to 0.45 (95% CI). This effect has been
estimated fairly accurately [as 95% CI isn’t too wide].

Was it worth fitting the more complex model?

Let’s compare the random (output above) to the fixed model:

48

https://sydney-informatics-hub.github.io/stats-resources/statistical_modelling.html#linear-models-1-linear-regression-anova-ancova-and-repeated-measures-a-simple-mixed-model


fixed_effects_anova <- lm(response ~ treatment, data = data6)
summary(fixed_effects_anova)

Call:
lm(formula = response ~ treatment, data = data6)

Residuals:
Min 1Q Median 3Q Max

-3302.0 -939.6 373.6 1040.5 2138.0

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3398.2 203.0 16.743 <2e-16 ***
treatmentTreatment 563.7 287.0 1.964 0.0524 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1435 on 98 degrees of freedom
Multiple R-squared: 0.03787, Adjusted R-squared: 0.02805
F-statistic: 3.857 on 1 and 98 DF, p-value: 0.05236

If we fit a simple ANOVA model like we did previously it shows marginal support that the
treatment has an impact (treatment p=0.0524) while the random model has strong support
(p < 2e-16). This is because the effect of treatment has been hidden by the noise in the data
set (residual=1435), while the residual for the random model is much smaller (222) meaning
it has more power. This is because the differences between subjects is included in the fixed
effects residual, but is partitioned out in the random effects as the id-intercept SD (1580).

There was much larger variation between patients (sd=1.0151) than within
(sd=0.1678), meaning it was worthwhile partitioning it out for a more accurate
model.

49


	Libraries
	Simple Linear Models
	Step 1: Exploratory Data Analysis
	Step 2: Model fitting
	Step 3: Model diagnostics
	Step 4: Goodness of fit
	Step 5: Interpret model parameters and reach conclusion
	Step 6: Report overall conclusion

	Analysis of Variance (ANOVA)
	Step 1: Pick suitable model via EDA
	Step 2: Fit model
	Step 3: Model diagnostics
	Step 4: Goodness of Fit
	Step 5: Interpret Model Parameters and reach a conclusion
	Step 6: Report overall conclusion

	Analysis of Covariance (ANCOVA)
	Step 1: Pick suitable model using EDA
	Step 2: Fit model
	Step 3: Model diagnostics
	Step 4: Goodness-of-fit
	Step 5: Interpret Model Parameters and reach a conclusion
	Step 6: Report overall conclusion

	Linear Mixed Models
	Step 1: Pick a suitable model to fit to the data via EDA
	Step 2: Fit the Model
	Step 3: Model diagnostics
	Step 4: Goodness of fit
	Step 5: Model interpretation and conclusion
	Step 6: Report overall conclusion


