Power and Sample Size Calculation – Software workflow for SPSS

To access the IBM SPSS Statistics documentation on Power Analysis, click <u>here</u>. Note: Results generated in SPSS may vary from your output in G*Power. In SPSS you are also limited with the plots you can develop for exploring different sample size scenarios.

1. Difference between 2 means

Example: Chicken welfare - Bone density

The bone density of chickens is an important indication of their welfare. You want to test to see if (mineral) bone density can be improved from 120 to at least 130 mg/cm³.

- Treatment group (high mineral diet)
- Control group (normal diet)
- Response variable: Measure the tibia bone density after 6 weeks growth

Question 1: How many chickens do you need to detect a difference in bone density of 10mg/cm³?

Step 1	Determine experiment type and statistical test	T-test (assume normality)
Step 2	Set α and $1 - \beta$	$\alpha=0.05$ and 1 - $\beta=0.8$
Step 3	Set the smallest effect size of interest (SESOI)	$SESOI = 10 mg/cm^3$
Step 4	Estimate the variance	You know from previous studies what the typical variation in bone density is for the control diet. You don't know about the treatment diet. You will use an estimate from the control diet of $SD = 20mg/cm^3$. Assume equal group sizes, $n1 = n2$.
Step 5	Calculate the minimum sample size	Put all the information into SPSS. For access to the IBM SPSS Statistics documentation on Power Analysis of Independent- Samples T Test, click <u>here</u> .
Step 6	Explore scenarios	Consider how much your within-study standard deviation could vary from your point estimate. You will also run the sample size calculation using $SD = 15$ (possible min value) and $SD = 30$ (possible max value).

Methods:

<u>F</u> ile	<u>E</u> dit	View	Data	Transform	Analyze	Graphs	Utilities	Extensions	<u>W</u> indow	Help			
					Powe	Analysis		>	Means	>	One-Sample T Test		
_	-	-			Meta	Analysis		>	Proportions	>	Paired-Samples T Test	Visible: 0 of 0 V	ariablac
		LIGE	_	Nor	Repor	ts		>	<u>Correlations</u>	>	Independent-Samples T Test		anables
1		VdI		VdI	D <u>e</u> scr	iptive Stat	istics	>	Regression	>	One-Way ANOVA	vai vai	^
2					Bayes	ian Statis	tics	>					
3					Tables	6		>					
4					Comp	are Means	S	>					
5					Gener	al Linear I	Model	>					
6					Gener	alized Lin	ear Models	>		_			

1. Analyze > Power Analysis > Means > Independent-Samples T Test

2. Enter the values for the chick experiment as per either the left (specifying population mean difference) or right (specifying population mean for group 1 and group 2) screenshot below:

ta Power Analysis: Independent-Sample Means	×	ter Power Analysis: Independent-Sample Means	×
Test Assumptions	Plot	Test Assumptions	Plot
● <u>E</u> stimate sample size		● <u>E</u> stimate sample size	1 101
● Single power value: 0.80		⊙ Singl <u>e</u> power value: 0.80	
O Grid power values: Grid		O Grid gower values: Grid	
Grid values: None selected		Grid values: None selected	
Group size ratio: 1		Group size ratio: 1	
O Estimate power		O Estimate power	
Sample size for group 1: and group 2:		Sample size for group 1: and group 2:	
Pop <u>u</u> lation mean difference:		O Pop <u>u</u> lation mean difference: 10	
O Population mean for group 1: and group 2:		Population mean for group 1: 120 and group 2: 130	
Population standard deviations are		Population standard deviations are	
● E <u>q</u> ual for two groups		 Egual for two groups 	
Pooled standard deviation: 20		Pooled standard deviation: 20	
O Not equal for two groups		O Not equal for two groups	
Standa <u>r</u> d deviation for group 1: and group <u>2</u> :		Standard deviation for group 1: and group 2:	
Test Direction		Test Direction	
● Nondirectional (two-sided) analysis		● Nondirectional (two-sided) analysis	
O <u>D</u> irectional (one-sided) analysis		O Directional (one-sided) analysis	
Significance level: 0.05		Significance level: 0.05	
OK Paste Reset Cancel Help		OK Paste Reset Cancel Help	

Power Analysis Table

				Test Assumptions			
	N1	N2	Actual Power ^b	Power	Std. Dev. ^c	Effect Size	Sig.
Test for Mean Difference ^a	64	64	.801	.8	20	.500	.05

a. Two-sided test.

b. Based on noncentral t-distribution.

c. Group variances are assumed to be equal.

4. Repeat the process using $SD = 15 \text{ mg/cm}^3$. Assume equal group sizes, n1 = n2. Your output should be as follows:

Power Analysis Table

				Test Assumptions				
	N1	N2	Actual Power ^b	Power	Std. Dev.°	Effect Size	Sig.	
Test for Mean Difference ^a	37	37	.808	.8	15	.667	.05	
								_

a. Two-sided test.

b. Based on noncentral t-distribution.

c. Group variances are assumed to be equal.

5. Repeat the process using SD = 30 mg/cm^3 . Assume equal group sizes, n1 = n2. Your output should be as follows:

Power Analysis Table

				Test Assumptions			
	N1	N2	Actual Power ^b	Power	Std. Dev. ^c	Effect Size	Sig.
Test for Mean Difference ^a	143	143	.802	.8	30	.333	.05

a. Two-sided test.

b. Based on noncentral t-distribution.

c. Group variances are assumed to be equal.

6. For a specified SESOI and SD, you can compare sample sizes for different levels of power. Enter the values as per the screenshots below using the Grid power values option and specifying the power range:

 \times

st Assumptions	
<u>E</u> stimate sample size	
O Single power value: 0.8	
Grid values: 0.80 TO 0.90 BY 0.05	
Group size ratio: 1	
Estimate power	
Sample size for group 1: and group 2:	
Pop <u>u</u> lation mean difference: 10	
Population mean for group 1: and group 2:	
opulation standard deviations are	
) Egual for two groups	
Pooled standard deviation: 20	
) No <u>t</u> equal for two groups	
Standa <u>r</u> d deviation for group 1: and group <u>2</u> :	
est Direction	
<u>N</u> ondirectional (two-sided) analysis	
<u>) D</u> irectional (one-sided) analysis	
ignificance level: 0.05	
OK Paste Reset Cancel Help	

懤 Power Analysis: Independent-Sample Means: Grid Values

Specify single power	Specify power range
value(<u>s</u>):	Sta <u>r</u> t: 0.8
Add	E <u>n</u> d: 0.9
<u>C</u> hange	By: 0.05
Remove	
<u>C</u> ontinue	Cancel Help

Power Analysis Table

					Test Ass	umptions	
Test for Mean Difference ^a	N1	N2	Actual Power ^b	Power	Std. Dev. ^c	Effect Size	Sig.
1	64	64	.801	.800	20	.500	.05
2	73	73	.851	.850	20	.500	.05
3	86	86	.903	.900	20	.500	.05

a. Two-sided test.

b. Based on noncentral t-distribution.

c. Group variances are assumed to be equal.

8. You can also plot the information in the table above by clicking Plot and checking the Power estimation versus sample size box as per below:

🔚 Power Analysis: Independent-Sample Means: Plot

Power estimation versus sample	le size 🗧 Power e s <u>t</u> imation versus effect size (or mean difference)
Range o <u>f</u> sample size ratio	Range of effect size (or mean difference)
Lower bound:	L <u>o</u> wer bound:
Upper bound:	Upper bound:
	(i) Mean difference is used if the group variances are not equal
Three-Dimensional Plot	
Power estimation versus	
effect size (or mean difference)	ce) on <u>x</u> -axis and sample size ratio on y-axis
O effect size (or mean different	ce) on <u>y</u> -axis and sample size ratio on x-axis
Vertical rotation 10 degrees	Horizontal rotation 325 degrees
Range of sample size ratio	Range of effect size (or mean difference)
Lower bound:	Lower <u>b</u> ound:
Upp <u>e</u> r bound:	Upper bound:
	Maan difference is used if the group uprices are not equal

×

9. Click Continue to generate your plot. Note: The x-axis shows the total sample size, rather than the sample size per group. Your plot should be as follows:

2. Difference between 2 means (Mann-Whitney)

Example: Happiness Survey

You want to measure happiness using the Lyubomirsky & Lepper scale. Each item response ranges from 1 (unhappy) to 7 (happy). The score is the sum of 4 items, so the range is $4\sim 28$.

A pilot study on two groups produced the following results that can be used for the power calculation:

	Val	ues	Ranks		
	Single	Single Married		Married	
	12	20	3	1	
	11	15	4	2	
	10	9	5	6	
	6	8	8	7	
Avg	9.8	13.0	5	4	
SD	2.6	5.6			

You want to apply the happiness survey to different groups of people (e.g. single vs. married) to see if there is a difference in scores.

Question 2: What is a meaningful difference?

Step 1	Determine experiment type and statistical test	Mann-Whitney (also called Wilcoxon rank sum)
Step 2	Set α and $1 - \beta$	lpha = 0.05 and 1 - eta = 0.8
Step 3	Set the smallest effect size of interest (SESOI)	SESOI = 4 points
Step 4	Estimate the variance	SD1 = 2.6 and SD2 = 5.6
		Heuristic method – Do the calculations as if performing the corresponding parametric test (i.e., the t-test), then add 15% to the sample size.
Step 5	Calculate the minimum sample size	Note: There are currently no options in SPSS to run sample size calculations for non-parametric tests, so the heuristic method will be used.
		Put all the information into SPSS. For access to the IBM SPSS Statistics documentation on Power Analysis of Independent-Samples T Test, click <u>here</u> .

Methods:

<u>F</u> ile	Edit	View	Data	Transform	Analyze	Graphs	<u>U</u> tilities	E <u>x</u> tensions	Window	Help			
					Po <u>w</u> er	Analysis		>	Means	>	Qne-Sample T Test		
_					Meta	Analysis		>	Proportions	>	Raired-Samples T Test	Visible: 0 of 0	Variables
		var		var	Repor	ts		>	<u>Correlations</u>	>	Independent-Samples T Test		valiables
		Val		vai	Descr	ptive Stati	istics	>	Regression	>	One-Way ANOVA	vai vai	^
	>				Bayes	ian Statis	tics	>		1		_	
	3		-		Tables	5		>					
4	L.				Comp	are Means	5	>		-			
Į	5				Gener	al Linear M	Nodel	>					
(5				Gener	alized Line	ear Models	>					

1. Analyze > Power Analysis > Means > Independent-Samples T Test

2. Enter the values for the happiness experiment as per either the left (specifying population mean difference) or right (specifying population mean for group 1 and group 2) screenshot below:

Power Analysis: Independent-Sample Means	×	here a Power Analysis: Independent-Sample Means X
Test Assumptions	Plot	Test Assumptions Plot
● <u>E</u> stimate sample size		● Estimate sample size
Single power value: 0.80 ■		Single power value: 0.80
O Grid gower values: Grid		O Grid <u>power values</u> : <u>Grid</u>
Grid values: None selected		Grid values: None selected
Group size ratio: 1		Group size ratio: 1
O Estimate power		O Estimate power
Sample size for group 1: and group 2:		Sample size for group 1: and group 2:
● Pop <u>u</u> lation mean difference: 4		O Pop <u>u</u> lation mean difference: 4
O Population mean for group 1: and group 2:		Population mean for group 1: 9.5 and group 2: 13.5
Population standard deviations are		Population standard deviations are
O Egual for two groups		O Egual for two groups
Pooled standard deviation:		Pooled standard deviation:
Not equal for two groups		● Not equal for two groups
Standard deviation for group 1: 2.6 and group 2: 5.6		Standard deviation for group 1: 2.6 and group 2: 5.6
Test Direction		Test Direction
\bigcirc <u>D</u> irectional (one-sided) analysis		O Directional (one-sided) analysis
Significance level: 0.05		Significance level: 0.05
OK Paste Reset Cancel Help		OK Paste Reset Cancel Help

➡ Power Analysis - Independent Sample Means

Power Analysis Table								
						Test Assumpt	ions	
	N1	N2	Actual Power ^b	Power	Std. Dev1	Std. Dev2	Mean Difference	Sig.
Test for Mean Difference ^a	21	21	.818	.8	2.6	5.6	4.000	.05
a. Two-sided test.								
b. Based on noncentral t-dis	tribution.							

4. Add 15% for non-parametric. $N = 21 \times 1.15 = 24.15$. Since you cannot have 0.15 of a person, you should round up the sample size to 25 people per group.

3. Difference between 2 proportions

Example: Happiness Survey

The survey scores could also be analysed as proportions by considering how many report a value above a threshold (say >14 means "happy").

- Singles group: P1 = proportion of subjects who respond "happy"
- Married group: P2 = proportion of subjects who respond "happy"

Question 3: Say you want to find a minimum difference in proportions of P1 - P2 = 0.1. What sample size is required?

Step 1	Determine experiment type and statistical test	Fisher's Exact test (should be used when sample sizes are going to be small but can also be used for larger sample sizes providing you with a more conservative estimate).
Step 2	Set α and 1 – β	$\alpha = 0.05$ and 1 - $\beta = 0.8$
Step 3	Set the smallest effect size of interest (SESOI)	SESOI = P1 - P2 = 0.1
Step 4	Estimate the variance	You also need to estimate the two proportions. Let's first assume that there will be maximum variance ($p = 0.50$), so let's try using P1 = 0.55 and P2 = 0.45.
Step 5	Calculate the minimum sample size	Put all the information into SPSS. For access to the IBM SPSS Statistics documentation on Power Analysis of Independent- Samples Binomial Test, click <u>here</u> .
Step 6	Explore scenarios	You will also run the sample with P1 = 0.85 and P2 = 0.95.

Methods:

1. Analyze > Power Analysis > Proportions > Independent-Samples Binomial Test

<u>F</u> ile	Edit	View	Data	Transform	Analyze	Graphs	Utilities	Extensions	Window	Help			
				10	Po <u>w</u> e	r Analysis		>	<u>M</u> eans	>	} 🛆 🗖 🔍		
-	-	-			Meta	Analysis		>	Proportions	>	One-Sample Binomial Test		
					- Regor	ts		>	Correlations	>	Related-Samples Binomial Test		
		var		var	Descr	Descriptive Statistics		>	Regression	>	Independent-Samples Binomial Test		
	2				Bayes	sian Statis	tics	>		1			
1	3				Table	5		>					
4	1				Comp	are Means	6	>					
4	5				Gener	al Linear M	Aodel	>					

2. Enter the values for the happiness experiment as per the screenshot below.

Power Analysis Table

					Test	Assumption	S	
	N1	N2	Actual Power ^b	Power	Risk Difference	Risk Ratio	Odds Ratio	Sig.
Test for Proportion Difference ^a	411	411	.800	.8	.100	1.222	1.494	.05

a. Two-sided test using large-sample approximation.

b. Based on the Fisher's exact test.

4. Repeat the process using P1 = 0.85 and P2 = 0.95. Your output should be as follows:

Power Analysis Table

				Test Assumptions						
	N1	N2	Actual Power ^b	Power	Risk Difference	Risk Ratio	Odds Ratio	Sig.		
Test for Proportion Difference ^a	153	153	.800	.8	100	.895	.298	.05		

a. Two-sided test using large-sample approximation.

b. Based on the Fisher's exact test.