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We value your feedback

‹#›

– We aim to help HDR students and researchers in a wide range 
of fields across different faculties

– We want to hear about you and whether this workshop has 
helped you in your research.

– Later in this workshop there will be a link to a survey
– It only takes a few minutes to complete (really!)
– Completing this survey will help us create workshops that best 

meet the needs of researchers like you
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During the workshop

– Ask short questions or clarifications during the workshop. There 
will be breaks during the workshop for longer questions.

– Slides with this blackboard icon are mainly for your reference, 
and the material will not be discussed during the workshop. 

Challenge Question
– A wild boar is coming towards you at 200mph. Do you:?

– A. Ask it directions
– B. Wave a red flag
– C. Wave a white flag
– D. Begin preparing a trap

‹#›
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After the workshop

These slides should be used after the workshop as Workflows and 
reference material.
– Todays workshop gives you the statistical workflow, which is 

software agnostic in that they can be applied in any software.
– There are also accompanying software workflows that show 

you how to do it. We won’t be going through these in detail. 
But if you have problems we have a monthly hacky hour where 
people can help you.

1on1 assistance
– You can email us about the material in these workshops at any 

time
– Or request a consultation for more in-depth discussion of the 

material as it relates to your specific project. Consults can be 
requested via our Webpage (link is at the end of this 
presentation)

‹#›
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Research Workflow

– Why do we use a research workflow?

– As researchers we are motivated to find answers quickly

– This drive can cause problems if we don’t think systematically

– … and we need to in order to:
• Find the right method
• Use it correctly
• Interpret and report our results accurately

– The payoff is huge, we can avoid mistakes that would affect 
the quality of our work and get to the answers sooner

– So… what is a workflow?

– The process of doing a statistical analysis follows the same general “shape”.

– We provide a general research workflow, and a specific workflow for each major step in your 
research 
(currently experimental design, power calculation, analysis using linear 
models/survival/multivariate/survey methods)

– You will need to tweak them to your needs

‹#›
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General Research Workflow

1. Hypothesis Generation (Research/Desktop Review)
2. Experimental and Analytical Design (sampling, 

power, ethics approval)
3. Collect/Store Data
4. Data cleaning
5. Exploratory Data Analysis (EDA)
6. Data Analysis aka inferential analysis
7. Predictive modelling
8. Publication

‹#›
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CONTENTS: Generalised Linear Models II

First, we will explain the Generalised Linear Model Framework 
and how it is just an extension of the Simple Linear Framework 
introduced in Workshop I.

Statistical Workflows for:
– Logistic (binary) regression
– Poisson (count) regression

These workflows are software agnostic but also have 
accompanying R code if you wish to do it in R. Plots are done 
using a combination of default plotting functions and ggplot 
functions. You will know the difference since ggplot functions start 
with ggplot().
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Generalised Linear Models Framework
Simple Linear Models (workshop 1) vs Generalised Linear 
Models (workshop 2+)

Introducing the concepts of:
• Design Matrix
• Linear Predictor
• Data Distribution
• Link Function
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What are Generalised Linear Models?

ANOVA

ANCOVA

Linear Regression

Before After Control 
Impact (BACI) Studies

Logistic (Binary) regression

Count (Poisson) regression

Randomised Control 
Trials (RCT’s)Repeated measures

Plus Many More!!
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A single unifying Theory

In Linear Models I we showed that although regression and 
ANOVA are often taught as different things, they aren’t. Instead, 
it’s much easier to understand them using a single unifying Linear 
Models theory. 

This allows us to apply them using the same workflow.

In this workshops we extend this theory to allow non normal 
(gaussian) errors and responses. This extended theory is called:

Generalised Linear Models
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The 3 elements of a GLM you need to know, and are 
the 1st topic of this workshop

When you ask software to do a GLM, it will ask you to specify the: 
1. Deterministic part of  the model i.e. relationship between Response 

(Y) and Predictors (X) ~ defined by the Design Matrix and Linear 
Predictor (Part 1 of a GLM)

2. Random/stochastic part of  the model i.e. Responses distribution ~ 
e.g. is it normal (Part 2 of a GLM)

3. Link Function ~ which links the deterministic model with the 
random/stochastic model (Part 3 of a GLM)
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We’re gonna need some Equations

DON’T FREAK OUT!!!

Couple tricks with equations:
– They are a language. 

– Each symbol represents a concept, so learn the concept to learn the 
equation.

– Then write the equation out in your native tongue
– If you don’t get the concept that’s fine. Just work on it a little bit each 

day. Like any language.

For example, this equation just means something called Y equals 
something called Beta Zero plus some Error.

Yi = i 

Page 14

Don’t get lost in the detail. Get the lay of the land at a 

Conceptual - big scale. And then come back and 
zoom into the detail when you have time.
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We are covering a lot in this first section, so don’t worry We are covering a lot in this first section, so don’t worry 
if you get a little lost. 

Just get the Big Picture, remember where you get lost, 
and then come back and learn a little more each day. 

If you can just get the take homes in these red boxes 
today that’s a great start. The main concepts are:

• Design Matrix
• Linear Predictor
• Data Distribution
• Link Function
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Simple Linear Model

Your Turn: Draw a linear 
model for the weight of 
chicken compared to the 
amount of feed it eats in 
its first month.

So in this example a 
chicken that eats 6 kg of 
Feed will weigh about 
4kg
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So we know it’s linear. Is that all we need to know?

And for that we need to fit an equation to the pictorial 
model you just drew so we can pull out the parameter 
that represents the Predictors affect on our Response.

High School Equation for a line
Y = slope (aka gradient) * X + Constant (aka Y intercept)

Y = mx + b

Statistical Equation for a line (puts the constant first)
Yi
෡ = 1Xi

So we want to find 1, which is the slope(gradient) of 
the line and represents the effect Feed has on Weight. 
(is the constant)

NO! We want to know exactly how our Predictor 
(feed) affects our Response (weight).
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But we’re still missing something?
THE DATA!!!!!

Each datum has it’s own natural variance from the line since each chicken is a bit different!

Another name for the Natural Variance is the “Error” of the model. Which is why we usually 
represent it as an in the model.

MODEL FOR OUR DATA
Yi = Yi

෡ + i = 1Xi+ i

MODEL FOR A LINE
Yi
෡ = 1Xi

Y෠ ~ The “hat” 
over the Y෠ tells us 
that it’s a 
prediction of Y 
for those specific 
predictor values 
for X. 

Y ~ Is the actual 
value of Y, so it’s 
the prediction + 
error.
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MODEL FOR OUR DATA
Yi = Yi

෡ + i = 1Xi+ i

So let’s look at all the different components of this equation so we 
can generalise it to more complex models. Such as:
– More than 1 continuous variable
– Categorical variables
– Non normal error

Page 20

– The blue points are our data.
– The black line is the regression line we use to 

predict, it’s our model
– The red lines are some example predictions along the line. 

Notice that our prediction is conditional on what X is e.g. 
when X=2 our prediction is Y=5. When X=8 we predict 
Y=3. In other words the prediction of Y is conditional on X.

– The orange line is the error for the specific blue 
point X=8, Y=5. So although we predict Y=3, this 
particular point has Y=5. So an error of 2 above 
the line i.e. Y= Y෠+so Y - Y෠ = 5-3=2.
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Simple Regression – Numeric Statistical Model

Yi = X0i+ 1X1i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Constant/Y intercept)

X1i~ design parameter for  (parameter X1i)

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i             i ~ Error of Observation i 
~ Constant/Y intercept parameter      i~ parameter for predictor 1

Data
Predictors

Observation
i

Response
Yi

Continuous
X1i X0i X1i

Prediction Error 
ԑi

1 4 4 1 4 4.6 -0.6
2 4 8 1 8 4.7 -0.7
3 6 1 1 1 5.1 0.9
4 3 9 1 9 2.1 0.9
5 2 1 1 1 2.9 -0.9
6 2 7 1 7 2.5 -0.5

Model VariablesDesign Matrix Parameters

𝑌𝑖෡
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Simple Regression – Numeric Statistical Model

Yi = X0i+ 1X1i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data
Predictors

Observation
i

Response
Yi

Continuous
X1i X0i X1i

Prediction Error 
ԑi

1 4 4 1 4 4.6 -0.6
2 4 8 1 8 4.7 -0.7
3 6 1 1 1 5.1 0.9
4 3 9 1 9 2.1 0.9
5 2 1 1 1 2.9 -0.9
6 2 7 1 7 2.5 -0.5

Model VariablesDesign Matrix Parameters

𝑌𝑖෡

Take Home
1. We only indirectly model the data. What we actually model is the Design Matrix, this is 

usually created in the background by the software.
2. You can fit fancy models by using a fancy design matrix. Examples of parameters not in 

the data but are in the design matrix include:
1. Intercept – so you can remove it to force the line through the origin e.g. 

calibrations.
2. Polynomials e.g. add a quadratic term to fit a parabola curve.

21

22



19/03/2025

12

Page 23

Simple Regression – Numeric Statistical Model

Yi = X0i+ 1X1i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data
Predictors

Observation
i

Response
Yi

Continuous
X1i X0i X1i

Prediction Error 
ԑi

1 4 4 1 4 4.6 -0.6
2 4 8 1 8 4.7 -0.7
3 6 1 1 1 5.1 0.9
4 3 9 1 9 2.1 0.9
5 2 1 1 1 2.9 -0.9
6 2 7 1 7 2.5 -0.5

Model VariablesDesign Matrix Parameters

𝑌𝑖෡

Take Home
1. We only indirectly model the data. What we actually model is the Design Matrix, this is 

usually created in the background by the software.
2. You can fit fancy models by using a fancy design matrix. Examples of parameters not in 

the data but are in the design matrix include:
1. Intercept – so you can remove it to force the line through the origin e.g. 

calibrations.
2. Polynomials e.g. add a quadratic term to fit a parabola curve.
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Let’s add another continuous predictor variable

Yellow represents the changes required for this to happen
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Multiple Regression

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 
X2i  ~ Predictor X2 of Observation i

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Constant/Y intercept)

X1i~ design parameter for  (parameter X1i)

X2i~ design parameter for  (parameter X2i)

Data       Design Matrix Parameters
Predictors

Observation
i

Response
Yi

Continuous
X1i

Continuous
X2i X0i X1i X2i

Prediction Error 
ԑi

1 4 4 12 1 4 12 4.4 -0.4
2 4 8 54 1 8 54 4.5 -0.5
3 6 1 87 1 1 87 5.3 0.7
4 3 9 96 1 9 96 3.2 -0.2
5 2 1 41 1 1 41 1.8 0.2
6 2 7 47 1 7 47 2.6 -0.6

Model Variables

𝑌𝑖෡

Notice the predictions 
have changed and the 
errors are overall
smaller (although some 
are individually larger). 
As expected when we 
add new parameters.

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i             i ~ Error of Observation i 
~ Constant/Y intercept parameter      i~ parameter for predictor 1
i~ parameter for predictor 2

Yi = X0i+ 1X1i + X2i + i 

Actual Y value = Linear Prediction + Error/Natural Variation
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Multiple Regression

Yi = X0i+ 1X1i + X2i + X3i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 
X2i  ~ Predictor X2 of Observation i
X3i  ~ Predictor X3 of Observation i

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Constant/Y intercept)

X1i~ design parameter for  (parameter X1i)

X2i~ design parameter for  (parameter X2i)

X3i~ design parameter for  (parameter X3i)

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Continuous
X2i

Continuous
X3i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 12 12 1 4 12 12 4.2 -0.2
2 4 8 54 54 1 8 54 54 4.3 -0.3
3 6 1 87 87 1 1 87 87 5.3 0.7
4 3 9 96 96 1 9 96 96 2.9 0.1
5 2 1 41 41 1 1 41 41 1.8 0.2
6 2 7 47 47 1 7 47 47 2.4 -0.4

Model Variables

𝑌𝑖෡

A new design matrix 
predictor is simply 
added for any new 
continuous predictors 
you want. 

Just keep going!!

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i             i ~ Error of Observation i 
~ Constant/Y intercept parameter      i~ parameter for predictor 1
i~ parameter for predictor 2               i~ parameter for predictor 3
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Multiple Regression

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 
X2i  ~ Predictor X2 of Observation i
X3i  ~ Predictor X3 of Observation i

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Constant/Y intercept)

X1i~ design parameter for  (parameter X1i)

X2i~ design parameter for  (parameter X2i)

X3i~ design parameter for  (parameter X3i)

A new design matrix 
predictor is simply 
added for any new 
continuous predictors 
you want. 

Just keep going!!

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i             i ~ Error of Observation i 
~ Constant/Y intercept parameter      i~ parameter for predictor 1
i~ parameter for predictor 2               i~ parameter for predictor 3

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Continuous
X2i

Continuous
X3i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 12 12 1 4 12 12 4.2 -0.2
2 4 8 54 54 1 8 54 54 4.3 -0.3
3 6 1 87 87 1 1 87 87 5.3 0.7
4 3 9 96 96 1 9 96 96 2.9 0.1
5 2 1 41 41 1 1 41 41 1.8 0.2
6 2 7 47 47 1 7 47 47 2.4 -0.4

Model Variables

𝑌𝑖෡

Yi = X0i+ 1X1i + X2i + X3i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Page 28

So how do we add Categorical Variables??

Yellow represents the changes required for this to happen
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Adding Categorical Variables (e.g. ANOVA)

Yi = X0i+ 1X1i + X2i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 
X2i  ~ Predictor X2 of Observation i

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Reference group = 
Non-Smoking)

X1i~ design parameter for  (parameter X1i)

X2i~ design parameter for  (parameter X2i = smoking)

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i             i ~ Error of Observation i 
~ (Reference group = Non-Smoking) i~ parameter for predictor 1
i~ parameter for smoking

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 4.6 -0.6
2 4 8 Smoking 1 8 1 4.2 -0.2
3 6 1 Non Smoking 1 1 0 5.1 0.9
4 3 9 Smoking 1 9 1 3.4 -0.4
5 2 1 Non Smoking 1 1 0 1.4 0.6
6 2 7 Non Smoking 1 7 0 2.2 -0.2

Model Variables

𝑌𝑖෡
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Adding Categorical Variables (e.g. ANOVA)

Yi = X0i+ 1X1i + X2i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

There are many different parameterisations (ways) to model categorical variables. The way I am 
showing you is called Dummy or Treatment Coding. Dummy coding works by picking 1 category as the 
reference category, this category is captured in the constant/intercept parameter and is always ‘on’. 
We then adjust it when a different category is present by adding their specific parameter into the 
prediction equation/model.

This means that every other category other than the reference category has it’s own design parameter 
which functions as an ‘indicator variable” since: 
– When X2 = 1 it “turns on” 2 since X2i = *1 = 

– 2 only comes into the model when X2 = 1, i.e. when people smoke i.e. it is the extra effect of 
smoking compared to the baseline reference level of not smoking.

– When X2 = 0 it “turns off” 2 since X2i = *0 = 0 
– We only have when people don’t smoke i.e. X2 = 0, i.e. it is the baseline prediction when 

people don’t smoke i.e. it’s the reference level.

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 4.6 -0.6
2 4 8 Smoking 1 8 1 4.2 -0.2
3 6 1 Non Smoking 1 1 0 5.1 0.9
4 3 9 Smoking 1 9 1 3.4 -0.4
5 2 1 Non Smoking 1 1 0 1.4 0.6
6 2 7 Non Smoking 1 7 0 2.2 -0.2

Model Variables

𝑌𝑖෡
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Adding Categorical Variables (e.g. ANOVA)

Yi = X0i+ 1X1i + X2i + X3i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Data (the actual data you collect)
Yi    ~ Response of Observation i 
X1i  ~ Predictor X1 of Observation i 
X2i  ~ Predictor X2 of Observation i

Design Matrix Parameters (the parameters in your model i.e. 
the actual data you model)

Xoi ~ design parameter for parameter (Reference group = 
Never Smoked)

X1i~ design parameter for  (parameter X1i)

X2i~ design parameter for  (parameter X2i = Smoking)
X3i~ design parameter for  (parameter X3i = Ex Smoker)

A new design matrix 
predictor is simply 
added for any new 
categorical levels you 
want. 

Just keep going!!

Model Variables (variables the model calculates)
Yi
෡~ Prediction for Observation i                 i ~ Error of Observation i 
~ (Reference group = Non-Smoking)      i~ parameter for predictor 1
i~ parameter for smoking                       i~ parameter for Ex Smoker

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 Never Smoked 1 4 0 0 4.6 -0.6
2 4 8 Smoking 1 8 1 0 4.2 -0.2
3 6 1 Ex smoker 1 1 0 1 5.1 0.9
4 3 9 Smoking 1 9 1 0 3.4 -0.4
5 2 1 Never Smoked 1 1 0 0 1.4 0.6
6 2 7 Never Smoked 1 7 0 0 2.2 -0.2

Model Variables

𝑌𝑖෡
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Adding Categorical Variables (e.g. ANOVA)

Yi = X0i+ 1X1i + X2i + i 

Actual Y value = Linear Prediction + Error/Natural Variation

Linear Models 3 goes into more detail by:
– discussing ways other than dummy/treatment coding to model categorical variables, 

such as effects coding. 
– having a worked example of how the deign matrix combines with the parameters to 

give the predictions.

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 4.6 -0.6
2 4 8 Smoking 1 8 1 4.2 -0.2
3 6 1 Non Smoking 1 1 0 5.1 0.9
4 3 9 Smoking 1 9 1 3.4 -0.4
5 2 1 Non Smoking 1 1 0 1.4 0.6
6 2 7 Non Smoking 1 7 0 2.2 -0.2

Model Variables

𝑌𝑖෡
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What’s the difference with multiple regression?

Yi = X0i+ 1X1i + X2i + X3i + i 
Actual Y value = Linear Prediction + Error/Natural Variation

Virtually none. The underlying model is exactly the same!! The only changes are in the data:
1. The X predictor is continuous when adding a continuous variable aka multiple regression, while 

it’s an indicator variable if adding a categorical variable.
2. Interpretation of the parameters differs.
3. But they are both still linear models.

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Continuous
X2i

Continuous
X3i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 12 12 1 4 12 12 4.4 -0.4
2 4 8 54 54 1 8 54 54 4.5 -0.5
3 6 1 87 87 1 1 87 87 5.3 0.7
4 3 9 96 96 1 9 96 96 3.2 -0.2
5 2 1 41 41 1 1 41 41 1.8 0.2
6 2 7 47 47 1 7 47 47 2.6 -0.6

Model Variables

𝑌𝑖෡

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 0 4.5 -0.5
2 4 8 Smoking 1 8 1 0 4.1 -0.1
3 6 1 Ex smoker 1 1 0 1 4.9 1.1
4 3 9 Smoking 1 9 1 0 3.4 -0.4
5 2 1 Non Smoking 1 1 0 0 1.2 0.8
6 2 7 Non Smoking 1 7 0 0 1.8 0.2

Model Variables

𝑌𝑖෡

Take Home
Categorical ANOVA 
style models are the 
same as continuous 
style regression 
models. The only 
difference is in the 
design matrix. 
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What’s the difference with multiple regression?

Yi = X0i+ 1X1i + X2i + X3i + i 
Actual Y value = Linear Prediction + Error/Natural Variation

Virtually none. The underlying model is exactly the same!! The only changes are in the data:
1. The X predictor is continuous when adding a continuous variable aka multiple regression, while 

it’s an indicator variable if adding a categorical variable.
2. Interpretation of the parameters differs.
3. But they are both still linear models.

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Continuous
X2i

Continuous
X3i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 12 12 1 4 12 12 4.4 -0.4
2 4 8 54 54 1 8 54 54 4.5 -0.5
3 6 1 87 87 1 1 87 87 5.3 0.7
4 3 9 96 96 1 9 96 96 3.2 -0.2
5 2 1 41 41 1 1 41 41 1.8 0.2
6 2 7 47 47 1 7 47 47 2.6 -0.6

Model Variables

𝑌𝑖෡

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 0 4.5 -0.5
2 4 8 Smoking 1 8 1 0 4.1 -0.1
3 6 1 Ex smoker 1 1 0 1 4.9 1.1
4 3 9 Smoking 1 9 1 0 3.4 -0.4
5 2 1 Non Smoking 1 1 0 0 1.2 0.8
6 2 7 Non Smoking 1 7 0 0 1.8 0.2

Model Variables

𝑌𝑖෡

Take Home
Categorical ANOVA 
style models are the 
same as continuous 
style regression 
models. The only 
difference is in the 
design matrix 
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Page 35

Representing complex models in a single, simple, 
concise and generalisable way

Wouldn’t it be great if we could represent any linear models 
study design e.g. ANOVA, regression, ANCOVA, BACI, etc.

Using the same notation?

That would give us a very easy framework to work within.

We wouldn’t need to learn lots of different things, and could 
instead put lots of different analyses into the same ‘compartment’ 
in our brain!

Page 36

The design matrix can represent any model!

Yi = X0i1X1i + 2X2i + 3X3i + ….. + i 

= X+ i  ~ a shorter and simpler way to write any linear model
= linear/additive model

X = design matrix            = vector of  = vector of
~ the actual data modelled parameters   errors




1

2

      Design Matrix Parameters

X0i X1i X2i
1 4 12
1 8 54
1 1 87
1 9 96
1 1 41
1 7 47

Error 
ԑi

-0.4
-0.5
0.7
-0.2
0.2
-0.6
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Page 37

The design matrix can represent any model!

Yi
෡ = X0i1X1i + 2X2i + 3X3i + ….. 

= X~ a shorter and simpler way to write any linear model
= linear/additive model

Let’s remove the error to give us the predictive model. This is what 
the hat over the Y means i.e. it’s the prediction of Y given 
(conditioned on) the X’s i.e. it’s the conditional expectation (average) 
of Y.
X = design matrix              = vector of 

~ the actual data modelled parameters   
      Design Matrix Parameters

X0i X1i X2i
1 4 12
1 8 54
1 1 87
1 9 96
1 1 41
1 7 47




1

2
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The linear predictor can represent any model!

Yi
෡ = X0i1X1i + 2X2i + 3X3i + ….. 

= X~ a shorter and simpler way to write any linear model
= linear/additive model 
= I ~ the linear predictor (the symbol is called eta). The 

conditional expectation (average) of Y on the data X.

X = design matrix            = vector of 
~ the actual data modelled  parameters   

The Linear Predictor 

(I)
Part 1 of the 3 

required for a GLM      Design Matrix Parameters

X0i X1i X2i
1 4 12
1 8 54
1 1 87
1 9 96
1 1 41
1 7 47




1

2
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Page 39

So far we have assumed a Normal distribution

– Response is continuous
– Ranges from  –infinity to + infinity

– 2 parameters describes the curve
– Mean = µ
– Variance = 2

– Variance independent of the mean i.e. different data sets with the same 
mean can have different variance.

Page 40

BUT, what if it was different, say count data?
Could use the Poisson distribution instead
– Response is discrete

– Often used for counts
– Ranges from  0 to + infinity

– 1 parameter describes the curve
– Mean = variance =  (lamba) i.e. different data sets with same mean 

have to have the same variance
– Variance gets bigger as mean does. Which makes sense since larger 

counts can have larger variance.
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Page 41

Different Data Distributions

Common Distributions

Normal for unbounded continuous data
Poisson for count, rate, positive integer and some log normal 
data
Binomial for binary data i.e. logistic regression

The Data Distribution
Part 2 of the 3 

required for a GLM

Page 42

Adding Transformations using the Link function

So far we have established that Yi = i+ i can be used to 
efficiently represent all types of  linear models.

But what if  we also want to transform the response e.g. a very 
common transformation is to take its logarithm so we now have
Log(Yi) = i+ i 

This is done using the link function in a GLM.

(A more formal way to represent it is E(Y|X) = µ = g-1() where g 
is the link function.)

The Link Function
Part 3 of the 3 

required for a GLM

TAKE HOME
Link function allows us to effectively transform the 

response
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Log links also allow us to change the additive linear 
predictor into a multiplicative model

Yi = X0i1X1i + 2X2i + 3X3i + ….. + i 

= I + i = linear predictor + i 

= linear/additive model

Yi = X0ix 1X1i x 2X2i x 3X3i ….. + i 

multiplicate model

More info and examples to come. For now just take in that GLM’s can 
use link functions, such as the log link, to ‘convert’ the linear predictor 
which is additive from an additive to a multiplicative model. This is how 
Poisson or Logistic regression become multiplicative, not additive, 
models. 

Page 44

GLM components (so far – to be explained is greyed out)

I

Part 1 of the 3 required for a GLM

The Linear Predictor (I) is a deterministic additive/linear equation of predictors (X) and 
parameters ( that will be used to predict the response (Y෡ ), after linking with the data 
distribution. It tells us the expected value of the response Y is conditional on the data X.

The parameters (are defined by the Design Matrix (X).

X =   X01X1 + 2X2 + 3X3 + …..
=  I ~ linear predictor (additive/linear model)

Part 2 of the 3 required for a GLM

Different Data Distributions add the random/stochastic element of the model 
e.g. Y ~ N(μ, σ2) 

Part 3 of the 3 required for a GLM

The Link Function links Part 1 and 2 together by showing how the distributions average (Part 2) 
which is the model prediction can be predicted using a function of the Linear Predictor (Part 1) 

e.g. if the link function is μ =  = 1X then Yi ~ N(1X1, σ2) = Simple Linear 
Regression. This also allows us to transform the response and make the model multiplicative.
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Page 45

Page 46

So let’s look at how these 3 things work together to let 
us model a wide range of data types

1. Linear Predictor
2. Data Distribution
3. Link Function
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Page 47

But first: some new notation so we can succinctly represent a 
GLM

If Y is normally distributed than we can represent it using this 
notation:

Yi ~ N(μ, σ2), where:
μ ~ average
σ2 ~ variance

Page 48

So using this notation we can say that 

Yi ~ N(μ, σ2) where:

• Y’s average (μ) comes from the model line which is μ=1X1i
• Or in other words we predict Y’s average (μ) for any 

combination of predictors (X) using our model i.e. Y’s average (μ) 
is conditional on the predictors (X). 

• The variance (σ2 ) is constant i.e. is not conditional on the 
predictors (X)

Let’s use this new notation to represent a simple linear 
regression Yi = 1X1i + i

In a simple linear regression Y is predicted using a model which is a line, 
and the error about this line is normal.  Which looks something like this.
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Succinctly we can say

We will use a Linear Predictor to model the deterministic relationship 
between Y and X:

 = 1X1 = X

We want Y’s random Data Distribution to be Normal:
Yi ~ N(μ, σ2)

So we Link the deterministic with the random parts of the model by 
letting E(Y|X) = μ =  to give us

Yi ~ N(1X1i, σ2) 
i.e. the expectation of
Y is conditional on X

Page 50

GLM components (so far – to be explained is greyed out)

I

Part 1 of the 3 required for a GLM

The Linear Predictor (I) is a deterministic additive/linear equation of predictors (X) and 
parameters ( that will be used to predict the response (Y෡ ), after linking with the data 
distribution. It tells us the expected value of the response Y is conditional on the data X.

The parameters (are defined by the Design Matrix (X).

X =   X01X1 + 2X2 + 3X3 + …..
=  I ~ linear predictor (additive/linear model)

Part 2 of the 3 required for a GLM

Different Data Distributions add the random/stochastic element of the model 
e.g. Y ~ N(μ, σ2) 

Part 3 of the 3 required for a GLM

The Link Function links Part 1 and 2 together by showing how the distributions average (Part 2) 
which is the model prediction can be predicted using a function of the Linear Predictor (Part 1) 

e.g. if the link function is μ =  = 1X then Yi ~ N(1X1, σ2) = Simple Linear 
Regression. This also allows us to transform the response and make the model multiplicative.
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Challenge Q: What do we change if the Error was Poisson 
instead of Normal?

We will use a Linear Predictor to model the relationship between Y 
and X:

 = 1X1 = X

We want Y’s Data Distribution to be Normal:
Yi ~ N(μ, σ2)

So we Link the above by letting E(Y|X) = μ =  to give us

Yi ~ N(1X1i, σ2) 
i.e. the expectation μ of Y is conditional on X

Page 52

Challenge Q: What do we change if the Error was Poisson 
instead of Normal?

We will use a Linear Predictor to model the relationship between Y 
and X:

 = 1X1 = X

We want Y’s Data Distribution to be Poisson:
Yi ~P(λ)

So we Link the above by letting E(Y|X) = λ = 𝒆, meaning  = 
log(λ) so we are using a Log link function, to give us

Yi ~ P(𝑒1X1)
i.e. the expectation μ=λ of Y is conditional on X


Note that the linear predictor () is 
linear, not Y෠ which is the log transform 
of ()
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Page 53

Congratulations. You just developed Generalised 
Linear Models from 1st principles!

Page 54

So let’s take a breath and tie everything we learnt in 
LM1 and so far in LM2 together into a concise 

summary you can refer back to
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Simple Linear Model (from LM1 workshops)
Yi = X+ i  

=Deterministic model + Random model
~ N(μ, σ2) where μ= Xso N(X, σ2) i.e. assumes a Normal error
~ Gives us a simple, single, unified way of fitting all types of continuous 

and categorical predictors so we can fit different models like simple linear 
regression, ANOVA, ANCOVA, BACI, RCT, Control/Treatment, etc. It does this 
by using a design matrix X with different design variables.

~ also known as General Linear Models – as opposed to Generalised
Linear Models which are the topic of this workshop.

Data       Design Matrix Parameters
Predictors

Obs
i

Response
Yi

Continuous
X1i

Categorical
X2i X0i X1i X2i X3i

Prediction Error 
ԑi

1 4 4 Non Smoking 1 4 0 0 4.5 -0.5
2 4 8 Smoking 1 8 1 0 4.1 -0.1
3 6 1 Ex smoker 1 1 0 1 4.9 1.1
4 3 9 Smoking 1 9 1 0 3.4 -0.4
5 2 1 Non Smoking 1 1 0 0 1.2 0.8
6 2 7 Non Smoking 1 7 0 0 1.8 0.2

Model Variables

𝑌𝑖෡

Page 56

Simple Linear Model vs Generalised Linear Model
Yi = X+ i  

=Deterministic model + Random model
~ N(μ, σ2) where μ= Xso N(X, σ2) i.e. assumes a Normal error
~ Gives us a simple, single, unified way of fitting all types of continuous 

and categorical predictors so we can fit different models like simple linear 
regression, ANOVA, ANCOVA, BACI, RCT, Control/Treatment, etc. It does this 
by using a design matrix X with different design variables.

~ also known as General Linear Models – as opposed to Generalised
Linear Models which are the topic of this workshop.

GENERALISED LINEAR MODEL (GLM)

Can fit all the same models as a Simple Linear Model since it uses the same 
design matrix within its Linear Predictor and can use a Normal distribution 
plus it:

1. Generalises the model so we can use non normal errors/distributions 
such as Poisson (for count data) and Binomial (for binary data).

2. Adds inbuilt response transformations via the link function.
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The 3 most common GLM’s

Simple Linear Models such as simple linear regression and ANOVA
Yi ~ N(μ, σ𝟐) where E(Y|X) = μ, and an Identify Link of   = μ giving a 
mean function of E(Y|X) = μ = hence our model is:

Yi ~ N(X, σ𝟐)

Poisson (count) Model ~ also used for rates and concentrations (refer to 
its example below)
Yi ~ Poisson(λ) where E(Y|X) = λ, and a Log Link of   = log(λ) giving a 
mean function of E(Y|X) = λ = 𝒆 hence our model is:

Yi ~ P(𝒆X)

Logistic (binary) Model

Yi ~ Binomial(p) where E(Y|X) = p, and a Logit Link of   =logit(p) =𝒍𝒏
p

1−p
giving a mean function of E(Y|X) = p = 

ଵ

1+𝒆షhence our model is:

Yi ~ B(
𝟏

1+𝒆షX)

Page 58

GLM components

I

Part 1 of the 3 required for a GLM

The Linear Predictor (I) is a deterministic additive/linear equation of predictors (X) and 
parameters ( that will be used to predict the response (Y෡ ), after linking with the data 
distribution. It tells us the expected value of the response Y is conditional on the data X.

The parameters (are defined by the Design Matrix (X).

X =   X01X1 + 2X2 + 3X3 + …..
=  I ~ linear predictor (additive/linear model)

Part 2 of the 3 required for a GLM

Different Data Distributions add the random/stochastic element of the model 
e.g. Y ~ N(μ, σ2) 

Part 3 of the 3 required for a GLM

The Link Function links Part 1 and 2 together by showing how the distributions average (Part 2) 
which is the model prediction can be predicted using a function of the Linear Predictor (Part 1) 

e.g. if the link function is μ =  = 1X then Yi ~ N(1X1, σ2) = Simple Linear 
Regression. This also allows us to transform the response and make the model multiplicative.
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Page 59

45

Page 60

Logistic Regression
Binary Response e.g. yes/no, success/failure, 0/1

Workflow Suitable for:
• Continuous predictor
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Page 61

Logistic/Binary Regression

Used when we have a categorical response than can be 1 of 2 categories. We 
usually code them as:
1 = Success
0 = Failure

Tells us which predictors are positively and negatively correlated with more 
successes. To make the output easy to understand the trick is defining the success 
group.

Medical: We often define the disease as the success since we want to know what 
influences getting it i.e. risk factors. Conversely, we may want to look into 
preventative factors, so we would define those without the disease as the success.

Churn: Could be either the people who left or stayed, depending on who we want 
to focus on.

Loan Defaults: Defaulters would usually be the success group since we want to 
know why people default. 

Page 62

Similar to Survival Analysis
When deciding which to use consider the data available and Research Question:
Logistic Regression models the probability (chance) of an event occurring
Survival Analysis models the probability (chance) of an event occurring and the time to that 
event

The main differences are that Survival Analysis:
1. Factors in time to the Event/Success and gives you survival curves. There is an important 

distinction between living for 6 months vs 6 years after diagnosis! Logistic treats them 
the same (unless time to death is explicitly added). 

2. Can handle data where the event happens for everyone i.e. everyone dies.
3. Factors in patients lost to follow up (censoring)
4. Uses Hazard Ratios instead of Odds Ratio.

– These are the ratio of 2 hazards. Hazards are the instantaneous rate of the event (e.g. death or 
failure) given an individual has survived up to that time (T), they are also the slope/tangent of the 
survival curve at time T. For a hazard ratio to be a consistent and hence good estimate of 2 hazards 
over a time interval they need to be proportional over this time period i.e. the slopes need to be 
parallel, which is why predator this assumption is often called the Parallel Lines assumption.

5. Naturally handles time varying covariates (since it naturally includes time to event while 
logistic regression does not). 
– Logistic regression factors in time as an additional predictor. A categorical predictor gives us 

different parameters/logit curves e.g. event occurred at 6 months vs 6 years, or continuous e.g. 
covariate adjustment parameter of Beta. Covariates that then vary by time can be added as 
interactions to the time predictor.

Refer to our Survival Analysis workshop for more information.
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Page 63

Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.

Page 64

Step 0) Clean and check data

– Is covered in “Research Essentials”, not this workshop.
– Is very important, so ensure you do it! 
– Get in the habit of checking the data every time you open it by 

looking at the corners i.e. start at the top left corner, then scroll 
to the far right corner, scroll down to the bottom right corner, 
scroll left to the bottom left corner, then finish by scrolling pack 
up to the beginning top left corner. 
– Weird things can happen. New versions, a stray cosmic ray. I have 

literally opened data to find it corrupted, and then reopened it and it’s 
fine. Similarly I have seen weird results only to rerun them to find them 
OK.  
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

Challenge Question: We have done a case control study. We got 
100 people with lung cancer and 500 people without. How would 
you plot the response variable?

Our response has 2 options. There are no outliers or NA’s.

So it’s not appropriate for a Simple Linear Regression with a 
Normal error. No way the error will be normal with only 2 
responses.

BUT it’s a good contender for Logistic/Binary 
Regression.

Lung Cancer No Lung Cancer

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

> plot(cc1$"lung cancer")

Page 66

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 
Now add the continuous predictor “healthy lifestyle” which is an 
index based on things like exercise, food, sleep, etc. It ranges from 
0 = unhealthy to 100 = healthy. How might it be related to lung 
cancer?

All 3 plots tells us there are no 
outliers or other data problems with 
“Healthy”. 

The boxplot and scatterplot show us 
there is a relationship between 
healthy and lung cancer. > windows()

> par(mfrow=c(2,2))
> hist(cc1$healthy, main="")
> plot(cc1$`lung cancer`, cc1$healthy, ylab="Healthy")
> plot(cc1$healthy, as.numeric(cc1$`lung cancer`), ylab="Lung Cancer", xlab="Healthy")
> lines(smooth.spline(cc1$healthy, as.numeric(cc1$`lung cancer`)), col="blue", ylab="Lung 
Cancer", 

xlab="Healthy")

In vertical axis: 1 = Lung Cancer, 2 = No Lung Cancer. Had to convert to numbers and not label 
with the text in order to get the smoothed blue line. 

65

66



19/03/2025

34

Page 67

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

This plot show the health indices average 
difference between those with and without 
lung cancer. Its quantified using an ANOVA 
like we did in LM1.
It allows us to predict the health index score 
knowing if someone has lung cancer.

This plot shows the relationship between 
the health index and getting lung cancer. 
It is quantified using logistic regression.
It allows us to predict the chance of 
having lung cancer if we know their 
health score.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 
Notice that the relationship between healthy and Lung Cancer 
isn’t linear. It’s more of an S shape.

This relationship is called a sigmoid function, and is what logistic 
regression fits.

But how do we fit this using a linear model?

The trick is the link function in a GLM. 
Which lets us fit non linear models.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

Logistic GLM might be a good fit, so lets try that

Yi ~ Binomial(μ) where logit(μ)=ln
p

1−p = X(since the 

probability of having lung cancer, p, is just the mean of the Y 
values, assuming 0,1 coding, which is often expressed as µ)

The logit link function lets us fit this sigmoid function. 
(And makes it multiplicative model when we back transform to odd’s ratios).

SIGMOID FUNCTION

Page 70

Step 1) If we had categorical variables such as smoking
We also need to look for Separation. 

Complete Separation occurs when we have cells that are entirely success or failures 
e.g. if we had included smoking perhaps all the smokers got lung cancer. This is an 
example of where smoking has separated the response. The model can not fit when this 
happens and is one common reason for logistic models not converging (since its 
effectively trying to divide by 0).

Separation often causes error messages like “failed to converge”, warning messages 
like “! glm.fit: fitted probabilities numerically 0 or 1 occurred” or high parameter SE’s.

Even if we don’t have complete separation, marginal separation can still cause 
problems.

No Lung CancerLung Cancer

0100Smoker

80010Non Smoker

SEEstimate

0.067.9Constant

5970001000Smoker
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Step 1) If we had categorical variables such as smoking

80-8575-8070-7565-7060-6555-6050-5545-5040-4535-40

0815273126253545100Success

461332282424466410Failure

Solution to separation can be merging/collapsing categories. Common 
problems are:

Age categories that are too fine so some have empty cells with no-one 
in them e.g. one would merge the last 3 columns to have a 75-85 
category. One does need to be careful as it’s a different age range, so 
some might merge them all into 10 year brackets.
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Step 1) If we had categorical variables such as smoking
Modelling lots of interactions and high order interactions between lots of 
variables increases the chance of empty cells, so its important to check sample 
sizes of all interactions before modelling them. High order interactions can be 
evaluated using tables like the below rather than the more usual 2x2 
contingency table.
For example: if you did a survey of skiers in Japan you might have plenty of 
people with red or black hair, brown or black eyes, and who are Scottish or 
Japanese. But it would be rare to find a Japanese person with red hair and 
green eyes!

CountEthnicityEye colourHair Colour

15ScottishGreenRed

0JapaneseGreenRed

12ScottishBlackRed

2JapaneseBlackRed

98ScottishGreenBlack

104JapaneseGreenBlack

74ScottishBlackBlack 

98JapaneseBlackBlack
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Step 2) Fit the Model

cc.model <- glm(lung.cancer ~ healthy, family=binomial(link= 
“logit”, data=cc2)

Linear Predictor is lung.cancer ~ healthy
Data Distribution is family=binomial(link= “logit”)
Link Function is family=binomial(link= “logit”)

“Success” = Having Lung Cancer, meaning the parameters tell us 
what risk factors there are for getting cancer.
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

The standard residual plots don’t help much here since we don’t 
expect normal residuals and as we only have 2 responses we get 
these 2 lines in the residual plots.

However, they can be used to look for
Outliers.

Dharma residuals are more useful
and are in the R workflow which can 
be downloaded from our online 
library.

> windows()
> par(mfrow=c(2,2))
> plot(cc.model)

73

74



19/03/2025

38

Page 75

Step 3) Check Model Assumptions via Diagnostics: Is 
there any Over Dispersion?

One of the problems we have is that the Binomial Distribution has 
no separate variance parameter.

The Normal distribution has 2 parameters. The mean (μ) and the 
variance (σ).

However, the Binomial Distribution only has 1 parameter: p~the 
probability of an event occurring. Its average and variance are 
both functions of this single parameter. But sometimes we have 
more variance than the distribution can handle. 

There are some complications on how we handle this for logistic 
regression which are beyond the scope of this workshop. However 
we mention it here so you are aware.
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Step 4) Goodness of Fit: Are any parameter SE’s too high?
It’s always a good idea to look at the parameter SE’s to see if any are a lot higher 
than the others. This can be a sign of a variety of problems. At the very least they 
suggest the estimate for this parameter is very unstable. The below is for our model 
and doesn’t suggest any problems.

BUT the below does might, notice SE is an order of magnitude larger than 
estimate i.e. times 10/add a zero. Often caused by separation, which we 
hopefully identified during the EDA. However marginal separation can be hard to 
identify, particularly if we are fitting a lot of 2 way interactions with a lot of 
cells.

Coeffects:
Estimate  Std.  Error

(Intercept)  7.9844    88.840
Healthy     -0.19048   1.856

# Some of the R output available from 
> summary(cc.model)
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Step 4) Goodness of Fit: Are any parameter SE’s too high?
As previously mentioned during the EDA stage (and copied below) a large SE 
can be a sign of Separation. 

Complete Separation occurs when we have cells that are entirely success or failures e.g. if we had 
included smoking perhaps all the smokers got lung cancer. This is an example of where smoking has 
separated the response. The model can not fit when this happens and is one common reason for 
logistic models not converging (since its effectively trying to divide by 0).

Separation often causes error messages like “failed to converge”, warning messages like “! 
glm.fit: fitted probabilities numerically 0 or 1 occurred” or high parameter SE’s.

Even if we don’t have complete separation, marginal separation can still cause problems.

No Lung CancerLung Cancer

0100Smoker

80010Non Smoker

SEEstimate

0.067.9Constant

5970001000Smoker
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Step 4) Goodness of Fit: Compare it to the NULL model

It’s always worth comparing any model to the NULL model, which is the model without any 
predictors and only a constant/intercept. 

In this case we have strong evidence that our model is outperforming the NULL model 
(P<2.2e-16).

The test used is a Likelihood Ratio Test (LRT), if the models are nested and have the same 
data. One drawback is that the LRT makes the asymptotic assumption that the chi-square 
distribution approximates the null distribution of likelihoods. In other words, at small sample 
sizes it may not be particularly accurate. As such the F test (which is s a specific type of LRT) 
might be better if the error is normal and sample sizes small - as it doesn’t require the LRT 
asymptotic assumption since it’s the actual ratio of 2 chi-squared variables. 
https://stats.stackexchange.com/questions/120309/low-sample-size-lr-vs-f-test and 
https://stats.stackexchange.com/questions/535709/anova-vs-likelihood-ratio-test-different-
result
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Step 4) Goodness of Fit: What is it’s (Pseudo) R-Squared?
Technically there is no R-Squared for a GLM, however there is an 
equivalent based on the % Deviance explained. This is one type 
of Pseudo R-Squared.

Which in this case is acceptable, at 45%
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Step 5) Interpret Model Parameters and reach a 
conclusion

For Simple Linear models we can simply interpret the parameters.

BUT in logistic regression since we used a logit link these are hard to interpret 
as they are on the logit scale.

The only really useful part of this ‘raw’ output is the p-value associated with 
the parameters. Which in this case shows strong evidence of being associated 
with healthy (p<2e-16).

# Some of the R output available from 
> summary(cc.model)
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Step 5) Interpret Model Parameters and reach a 
conclusion - Using Odds Ratios (OR)

The parameters can be made more interpretable by taking their exponential since 
this turns them into odds ratios (which will be explained shortly).

Remember how the logit link used a log transform? Well, taking their exponential is 
the inverse of this, which puts them back into the original scale. And then some 
fancy math means we can also interpret them as odds ratios.

Taking the exponential is similar to taking something to the power10. But instead of 10 
we use the constant e = exp = 2.718, which is the inverse of the natural logarithm 
function (ln) we used in the link function. 

Don’t overthink it!! You don’t need to know why we use an exp, just accept and use it!

For an example, as our coefficient is -0.19 if we took it to the power 10 we would get 
10-0.19048 = 0.65, but instead we do 2.718-0.19048 = e-0.19048 = exp(-0.19048) = 0.83.
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Step 5) Interpret Model Parameters and reach a 
conclusion - Using Odds Ratios (OR)

We get the below OR=0.83 for the continuous variable Health,  
which tells us that for each 1 point increase on the Health index 
the odds of getting lung cancer are 0.8 compared to the lower 
score (95%CI = 0.79-0.86).

So being healthy lowers the odds of getting lung cancer!
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Step 5) Interpret Model Parameters and reach a 
conclusion

95% Confidence Interval
Exp() i.e. odds ratio

P 
value
(raw)

T 
score
(raw)

SE
(raw)

Estimate
(raw)

Parameter

Upper 
Bound

Lower 
Bound

Estimate

<2e-
16

9.00.898.0Constant / 
Control ()

0.860.790.83<2e-
16

-100.019-0.19Health index 
()
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Step 6) Reporting: Overall Conclusion suitable for 
publication

“There is strong evidence to show that being healthy is associated with 
lower odds of Lung Cancer (p<2e-16). For each 1point increase on the 
Health index the Odds of getting lung Cancer are 0.8 compared to the 
lower score (95%CI odds ratio = 0.79-0.86). This effect on lung cancer 

has been estimated very accurately [as 95% CI is quite narrow].

The model is an acceptable fit to the data with a pseudo R2=45%. 
There were no outliers or unexplained structure.

The model fit was a GLM with binomial distribution and logit link 
function” 

When giving a p-value always give an estimate of the effect size as 
well i.e. the 95% CI.
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So what exactly is an Odds Ratio (OR)?
It’s best described with an example. 

Say the OR for smoking on whether you get lung cancer is 3. This means the odds of getting 
lung cancer if you smoke is 3 times the odds of getting it if you don’t smoke. In other words, 
an odds ratio is the ratio of  two odds.

And what is an “odds”? The odds of something happening is related to its probability, but 
isn’t the same. 

Say the probability/chance/risk of getting lung cancer if you smoke is 75%. Then the 
corresponding odds are p/(1-p)=75/25 = 3:1 = 3. These are obviously different numbers 
with different interpretations, which is why odds ratios can be used to comment on the odds 
of something occurring, not its probability, chance or risk.

You would have seen it in horse racing too e.g. if Phar Lap tends to win 19 out of 20 races 
than the odds of Phar Lap winning are 19:1 = 19/1 = 19. On the other hand, the 
probability of Phar Lap winning is 19/20 = 95%.

Figure from George A, Stead TS, Ganti L. What's the Risk: Differentiating Risk 
Ratios, Odds Ratios, and Hazard Ratios? Cureus. 2020 Aug 26;12(8):e10047. 
doi: 10.7759/cureus.10047. PMID: 32983737; PMCID: PMC7515812.

Risks report the # of events in relation to the # 
of trials i.e. # events vs # trials.
Odds report the  # of events in relation to the 
# of nonevents i.e. # events vs # nonevents.
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Odd Ratios (OR) are different to the Relative Risk (RR)

Relative Risk (RR) is the ratio (relative difference) of probabilities. The Odds Ratio (OR) 
is the ratio (relative difference) of odds. Meaning they have different interpretations 
so be careful what language you use when communicating results.

If the OR of smoking on getting lung cancer is 3, then you need to say the odds of 
getting lung cancer if you smoke is 3 times the odds of getting it if you don’t smoke.

If the RR of smoking on getting lung cancer is 3, then you need to say the chance of 
getting lung cancer if you smoke is 3 times the chance of getting it if you don’t smoke.

Incorrectly interpreting ORs as RRs can exaggerate the impact as ORs underestimate 
the RR when both are <1 and overestimate it when >1.

Gerald van Belle (2008) Statistical Rules of Thumb 
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Expert Trick 1) Interpreting Odds Ratios (OR) as 
Relative Risks (RR) using the rare disease assumption

The medical literature commonly interprets odds ratios from logistic regression as relative 
risks. 

This is because when an event is ‘rare’ odds ratios approximate relative risks. The plot 
below shows that when the incidence is 1% the OR and RR closely follow the 1:1 equivalence 
line, but become different very quickly as one moves away from 1when the incidence is as low 
as 5% (plot is from Gerald van Belle (2008) Statistical Rules of Thumb).

So, although some authors say 10% is rare enough. I disagree and would suggest 1% is the 
maximum. However, it is a subjective decision and if you are unsure then just report and 
interpret as an odds ratios.

There are other complications as well e.g. this assumption 
usually can’t be applied to case control studies meaning 
they always need to report odds ratios irrelevant to how 
small the incidence is. So before interpreting OR as RRs it’s a 
good idea to read up on it, a good place to start is Gerald 
van Belle (2008) Statistical Rules of Thumb (which is where 
the plot on the left comes from).
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Why OR underestimates the RR when both 
are <1 and overestimates it when >1

Because if we have p + q trials when we reduce p this means q has to increase. But this only 
impacts the numerator in the risk. While both the odds numerator and denominator are 
affected in opposite directions, so it falls faster. Similarly, if p increases the OR increases 
quicker.

George A, Stead TS, Ganti L. What's the Risk: Differentiating Risk Ratios, 
Odds Ratios, and Hazard Ratios? Cureus. 2020 Aug 26;12(8):e10047. doi: 
10.7759/cureus.10047. PMID: 32983737; PMCID: PMC7515812.

Gerald van Belle (2008) Statistical Rules of Thumb 
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It’s a multiplicative model, not an additive one

Given the odds of getting lung cancer drop by 0.8 for a 1 point 
increase in health. What impact does a 2 point increase in health have?

Would it be 0.8 + 0.8 = 1.6 (additive)?
– Can’t be this, since it goes from dropping the odds of lung cancer 

(<1) to increasing them (>1)!

Or 0.8 * 0.8 = 0.64 (multiplicative)? 
– This makes more sense as a 2 point increase in health leads to a 

lower chance of lung cancer than a 1 point increase.
– This is what the log link (transformation) does. It turns the additive 

linear predictor which is an additive model without a log link, into a 
multiplicative model when it has one.

– So to calculate the odds ratio for k intervals of difference in the 
health predictor it’s 0.8k for this example or k in general e.g. if we 
wanted the odds ratio for a continuous predictor that moved from 5 
to 10 it would be .
– Notice that this is for any difference in the predictor. The impact is the same 

if its 5 vs 10 or 100 vs 105, since both are a 5 interval difference.
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Expert Trick 2: Interpreting fractional OR and when 
swapping the response events success/fail definition 
is helpful
Let’s continue the previous lung cancer example where smoking's OR was 3 – which 
means smokers have 3 times the odds of getting lung cancer than non-smokers. 

If we changed the response reference category from having cancer to not having 
cancer than it makes sense for smoking’s OR to now be the reciprocal of what it was 
before i.e. 1/3=0.33 - since this now means that smoker’s have 1/3 = 33% the odds of 
not having lung cancer than non-smokers.

This is the same result, just expressed differently. Which makes sense since our 
conclusions shouldn’t differ based on the arbitrary decision on what to make the 
reference response category. Mathematically it shouldn’t affect the results.

The same thing occurs if one swaps the predictors event definitions around (but for 
slightly different reasons).

This is a handy trick to know since fractional odds ratios i.e. OR < 1, can be hard to 
interpret and communicate. So if you have a lot of hard to communicate OR < 1 just 
swap how you have defined the responses ‘success’ event and now they will all be 
greater than 1! (with the OR > 1 now less than 1).

You can also swap the response event, or predictor events, to make the interpretation 
easier. For example, double negatives when both are negative can be hard to interpret.
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Interpreting fractional OR and when swapping the 
response events success/fail definition is helpful

Mathematically this happens for the response because the odds of an 
event happening is the reciprocal of the odds that it didn’t happen 
i.e. if the odds(event A happening) = X than the odds(event A not 
happening) = 1/X. 

For example, if we have a logistic regression where we define event 
A as the success, and this results in a predictors OR being 1/3=0.33

Then if we swap response events and make event A the failure each 
odds within the odds ratio is inverted within themselves making the 
OR it’s reciprocal which is 1/0.33 = 3

On the other hand, if we swap the predictors then we are swapping 
the numerator and denominator odds in the odds ratio.
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Expert Trick 3) Consider reporting absolute measures 
such as probabilities/risks, odds and % of sample too
ORs compare the relative change in the odds, but ignore the underlying absolute chance of 
an event happening. It’s important to know both. 

Example 1: Low absolute chance of event. Say eating avocados increases the odds of a 
rare cancer by 10 i.e. OR=10. But the baseline odds of getting the rare cancer is 
0.0000000000000000000000000000001. Increasing the odds by 10 has little practical 
impact on the chance of getting cancer, so keep eating avocados! (Especially considering 
their other health benefits).

Example 2: Different ORs can have very different baseline chances. The below might show 
the % of people who got a dash of cabin fever during the COVID lockdowns of 2020. From 
2 studies, one done in Melbourne (which had strict lockdowns) and 1 in Cairns Qld (who were 
largely unaffected)
• As you can see the odds ratio is the same, people with kids were more likely to be 

affected (I wonder why??).
• However. Far more people in Melbourne were affected than in Cairns, as expected.

So, when reporting it can be useful to report both the underlying absolute %’s and their 
relative OR i.e. 
• People with kids were more likely to exhibit signs of Cabin Fever than people with no 

kids (Melb-75% vs 50%; OR=3, p=0.003: Cairns-25% vs 10%; OR=3, p=0.007)

p 

OR 
Children vs 

NoneOdds(None)Odds(Children)

% of people who 
got Cabin Fever who 

had no children

% of people who 
got Cabin Fever who 

had ChildrenLocation
0.00331350%75%Melbourne
0.00730.110.3310%25%Cairns
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When reporting absolute measures such as probabilities/risks, % 
of sample and metrics based on them like RR can’t be used, but 
odds and odds ratios are still OK

Before reporting absolute metrics such as probabilities/risks , sample %’s or 
metrics derived from them like relative risk we first need to decide if they are 
appropriate and useful metrics.

They may be useful if the study is an accurate representation of the overall 
population e.g. cross sectional studies. 

They are not useful if the study is not an accurate representation of the overall 
population. In such cases odds and the odds ratio are still relevant, which is why 
logistic regression often focuses on odds ratios, since it’s always applicable. For 
example:
– Case-Control Studies: are when we have a sample of cases e.g. a rare 

disease, and then collect a fixed number of controls e.g. those without the 
disease, to understand what the differences between the groups are and 
hence the risk factors for the disease. The # of controls collected is often 
fixed at 5 times the cases as this is optimal for minimising parameter 
standard errors. However, this means we can’t estimate the chance of the 
disease since it’s an artifact of the sampling (1/(1+5) = 1/6=0.17%) and 
not an accurate picture of its prevalence in the wider population. Meaning 
risks and relative risks can’t be calculated, but odds and odds ratios can 
since they simply compare the difference between the cases and controls.
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When reporting more than 2 Categories

One has to be careful that the wording makes it clear what the 
reference category is. This is because the p value refers to the 
comparison to the reference category i.e. the category captured 
in the intercept, not comparisons between the other groups. 

So assuming people with Kids were the reference category we 
might say: “Compared to people with no kids those with kids were 
more likely to get Cabin Fever (5+ kids-90% vs 50%; OR=9, 
p=0.003: 1-5 kids: 73% vs 50%; OR=2.7, p=0.007)”.

So in this example all the p-values are for comparing to the “No 
Kids” group. The 2 groups with kids are not directly compared.

p 

OR 
1-5 vs 
nonep 

OR 
5+ vs 
none

Odds 
none

Odds 
(1-5)

Odds 
(5+)

% of people who got 
Cabin Fever who had 

no children

% of people who got 
Cabin Fever who have 

1-5 kids Children

% of people who got 
Cabin Fever who have 

5+ kids Children

0.0072.70.0039.01.003950%73%90%
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Sample Size: Rule of 10

A common Rule of Thumb is that for stable results one needs 10 
observations for each parameter.

This is modified for logistic regression.

Instead of 10 observations/parameter we need 10 
events/parameter (or 10 non events if that is less common). E.g.

– A sample of 500 with 20 successes can have a model with 2 parameters
– A sample of 500 with 480 successes can still only have a model with 2 

parameters (since we only have 20 failures).
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EDA for interactions with 2 continuous variables

Interactions with 2 continuous variables are not straight forward to 
fit. There are a number of complications one needs to consider.

Just one is what type of surface is a suitable fit, for example is a 
plane suitable (i.e. a sheet of paper), or are there nonlinear 
relationships that need to also be fit e.g. maybe its more concave?

The first step in assessing this is (as always) EDA, and for a 
continuous response a suitable data visualization is either a 3D 
scatterplot plot, or some variant such as a contour plot or 
heatmap.

However, this doesn’t work as well with a binary response.
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An alternative is to a 2D plot, with the response colour coded. Below is 
a real-world example. This came to us in a consult, with the problem 
being the model would not converge. So as usual we started diagnosing 
the problem with EDA, which showed us that:
– Although the horizontal x axes continuous predictor is continuous 

there is no strong pattern with neither the red (failure of Artificial 
Insemination) or blue (success) symbols being more to the left or right. 
Making it hard to fit a sigmoid curve and hence logistic regression.

EDA for interactions with 2 continuous variables

– The more likely reason for the 
convergence problem though 
is the vertical axis. The large 
gap in the middle with no 
data makes it hard to fit a 
continuous interaction as a 
surface. This variable is 
actually more binary i.e. 0 vs 
very high.
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1:10
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Poisson (count) Regression
Discrete Positive Integer Response e.g. 0, 1, 2, 3, 4.

Workflow Suitable for:
• Positive Integers 
• Counts
• Rates
• Some Log Normal data
• Before After Control Impact design (BACI)
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Poisson (count) Regression

Uses the Poisson distribution which assumes the data is from the set of Natural 
Numbers i.e. the non-negative integers 0, 1, 2, 3, 4, etc. So it’s a good 
distribution for counts.

Can also be used to model rates. This is done by adding an offset variable to 
the model. This variable divides the count by something to turn it into a rate. 
For example:
– Cell concentrations are actually cell counts divided by volume of 

blood/plasma/etc. So rather than model the concentration assuming a 
Normal error which often fails we can instead model the counts as a 
Poisson using the volume as the offset i.e. cell concentration = ௖௘௟௟ ௖௢௨௡௧

௩௢௟௨௠௘
.

– We might have the count of fish caught, and want to divide it by the size of 
the net so it has no impact on the analysis (otherwise big nets would simply 
have higher counts which is obvious and not helpful). This is done by adding 
the net size in m2 as an offset so we convert the count of fish caught to the 
amount of fish caught/m2 of net.
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Changes to dingo diet caused by human interaction, 
and its implications on conservation.

Dingos are an important predator in Australian Landscapes. The meso-predator 
theory states that increasing them decreases cat/fox numbers and reduces 
pressure on small natives currently under threat of extinction.

A mine in the Tanami desert had 2 garbage tips which they fenced off. This gave 
us the opportunity to investigate how this affects dingo feeding behaviour. 

4 sites were selected: the 2 mine sites, 1 site that was a long way away from the 
tips and one that was an intermediate distance away. Scats were collected Before 
and After the tips were fenced and the # of different types of animals and 
rubbish found in them were counted. 

This gave us a Before, After, Control, Impact (BACI)
design. Which has good causal interpretation. 

Newsome T, Chris H, Wirsing A (2020) Restriction of 
anthropogenic foods alters a top predator diet and 
intraspecific interactions
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Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

So here is a plot for each of 
the 4 sites. But it’s not very 
good since all the scats are 
overlayed on each other.

EG: all the Away Scats that 
had 1 piece of rubbish in them 
are being plotted at the same 
point.

> windows()
> ggplot(data = data, aes(x=Area_2, y=RubbishSum, 
fill=BeforeAfter)) + geom_point(pch=21)
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

– To fix this I add a jitter - to 
the plot only, not the data 
we model.

– Now I can see that the 
number of scats with 
rubbish in them has 
dropped after the fences 
were installed. Except at 
DBS for some reason?

– The reason was that they 
broke through the fence 
wasn’t, so they all went over 
there!!

> windows()
> ggplot(data = data, aes(x=Area_2, y=RubbishSum, fill=BeforeAfter)) 
+ geom_point(pch=21, 
position=position_jitterdodge(jitter.width=0.4, jitter.height=0.3))
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

– The model I will show you is 
for the Desert mouse

> windows()
> ggplot(data = data, aes(x=Area_2, y=desert_mouse, 
fill=BeforeAfter)) + geom_point(pch=21, 
position=position_jitterdodge(jitter.width=0.4, jitter.height=0.3))
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA). 

Poisson GLM might be a good fit, so let’s try that meaning:

Yi ~ Poisson(λ)
~ mean=variance= λ

We link the linear predictor (Xto λ using the log link i.e. 
log(λ)=Xsince that is the conventional model. (NB: this 
makes a multiplicative model when we back transform to 
rates).
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Step 2) Fit the Model

desert_mouse.p1 <- glm(desert_mouse~Area_2*BeforeAfter, 
family=poisson(link=“log”), data=data)

Linear Predictor is desert_mouse~Area_2*BeforeAfter
Data Distribution is family=poisson(link=“log”)
Link Function is family=poisson(link=“log”)
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Step 3) Check Model Assumptions via Diagnostics: 
Zero Inflation

Sometimes we get count data with far too many zeros for the 
Poisson distribution to handle. This is called Zero Inflation.

It often happens if there are effectively 2 processes occurring:
1. Whether the event occurs
2. If it does occur, how often it does

Simplistically fitting 2 models is an older way around this (called 2 
step/stage or hurdle models). These fit a binomial (logistic) model 
to whether the event occurs, and then a Poisson if it does. The 
modern approach is to use Zero Inflated Poisson (ZIP) and Zero 
Inflated Negative Binomial (ZINB) models that effectively combine 
these 2 models into a single model fit. 

107

108



19/03/2025

55

Page 109

Step 3) Check Model Assumptions via Diagnostics: 
Zero Inflation
A rough test for this is to simulate the number of zeros we expect 
based on the overall average and then compare it to what we 
have. If it is very different we may need some type of ZIP model.

Below shows we may have more zero’s than the theoretical 
distribution. But I have seen much worse and this is only rough 
since it’s actually the conditional theoretical distribution we should 
be comparing to. So it isn’t bad enough to be overly worried 
about.

Theoretical Distribution

Actual Distribution

> mean(data$desert_mouse)
> test.0i.theory <- rpois(mean(data$desert_mouse), n=10000)
# better to use proportion with large N since it will be stable. 
count of 0's at low n will not be.
> prop.table(table(test.0i.theory))*100
> round(prop.table(table(data$desert_mouse))*100,2)

Page 110

Step 3) Check Model Assumptions via Diagnostics: 
Overdispersion
For the same reasons explained in logistic regression Poisson distributions can be over dispersed i.e. 
there is too much variance for the single parameter in the Poisson distribution to handle. 

We test this using a function from http://bbolker.github.io/mixedmodels-
misc/glmmFAQ.html#overdispersion. There is ongoing research on this topic so more recent 
information and solutions may be available here.

This function tests whether the dispersion parameter is different to 1, which is what a Poisson 
distribution assumes. It tells us that although there is statistically significant overdispersion it is not 
very large at only 1.6, so not worth worrying about. What is considered too large is domain 
specific and subject to ongoing research, I have seen cutoffs from 1.10 – 5 used.

Common ways to deal with this are:
1. Distributional Regression. 2 distributions are commonly used:

1. Negative Binomial distribution - fits a more suitable distribution with an extra dispersion 
parameter, there are a variety of R packages (including gamlss.dist) that fit this model 
and is usually available in other software such as SPSS. Very commonly used.

2. Generalised Poisson distribution - fit in R using the gamlss.dist package and the GPO 
distribution, harder to fit in other software.

2. Fit an individual level random effect using a GLMM (this tricks the model into adding an 
extra variance parameter).

3. Quasi-Poisson can also be used. Given the above alternatives there is some debate on how 
useful it is due to the difficultly in applying inferential methods such as likelihood ratio test, 
AIC, etc. http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
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Step 3) Check Model Assumptions via Diagnostics: 
Residuals
– No obvious influential outliers
– No systematic patterns we need to account for

– The discrete lines are caused by the 8 combinations of treatments i.e. 4 
sites before and after = 8

– Residuals aren’t normal, but nor
do we expect them to be. They’re
Poisson!
– Dharma residuals are more useful
and are in the R workflow which can 
be downloaded from our online 
library.

# Standard plots
> windows()
> par(mfrow=c(2,2))
> plot(rubbish.p1)

Page 112

Step 4) Goodness of Fit: Compare to NULL model

It’s a much better fit than the NULL model.
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Step 4) Goodness of Fit: What is it’s Pseudo R-Squared?
Technically there is no Pseudo R-Squared for a GLM, however 
there is an equivalent based on the % Deviance explained. 

Which in this case is acceptable, at 57%

Page 114

Step 5) Interpret Model Parameters and reach a 
conclusion
For Simple Linear models we can simply look at the parameter 
estimate summary and CI’s. BUT in Poisson regression these are 
hard to interpret as they are still on the log scale (which was our 
link function).

The only really useful part of this ‘raw’ output is the p-value 
associated with the parameters. Which in this case shows strong 
evidence of Intermediate and Granites being different from Away 
(Intercept), Before/After and the interactions (which means the 
Before/After effect differs between sites) – since p values are so 
small.
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“Graphs allow us to view 
complex mathematical models 
fitted to data, and they allow 
us to assess the validity of 
such (statistical) models” 

(Cleveland 1994, author of “The 
elements of graphing data” and

“Visualising data”).
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Step 6) Reporting: Overall Conclusion suitable for 
publication

“The model is a good fit to the data with a pseudo R2=57%. 
There were no outliers or unexplained structure. 

The model fit was a GLM with Poisson distribution and log link 
function. There was no evidence of over dispersion or zero 

inflation.” 

But as it’s a complex design with a lot going on we will use a plot 
to report the patterns and effects. 
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Step 6) Reporting: Overall Conclusion suitable for 
publication

So far our examples have had few predictors and easy 
interpretation, so the words I’ve been giving you have been 
sufficient.

More complex designs with more
predictors often require novel
reporting methods. And charts are
a great way to do that.
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Step 6) Reporting: Overall Conclusion suitable for 
publication

We actually used this chart. Where the p-value at the top right is 
the specific t-test comparing Before vs After for each site, adjusted 
for multiple comparisons using Tukeys. The response has been 
adjusted to the response scale. The interpretation is:

– DBS, where dingos could still access 
garbage, is the only site where there is 
no evidence of dingos eating more 
Desert Mouse after the tips were 
fenced. This provides strong evidence 
that anthropocentric food availability 
can effect dingos diet and the wider 
Tanami Ecology.  

– Interestingly, even at the sites far Away 
there is very strong evidence of a 
difference after the tips were fenced 
with scats having Desert Mouse in them 
increasing to a rate of [95%CI: 0.6-0.8] 
from [95% CI: 0.07-0.12] before the tip 
was fenced. There is strong evidence 
these rates have changed (p<0.001).
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Step 6) Reporting: Overall Conclusion suitable for 
publication

This type of chart can be used for any GLM.

Not just Poisson.

This is the power of GLM’s, similar 
charts work for all of them. So what 
you learn for one type of data you
can easily apply to other types.
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Step 6) Reporting R code

?pmmeans
(desert_mouse.p1.mm1 <- pmmeans(desert_mouse.p1, ~BeforeAfter|Area_2, 
transform="response"))

# Chart
windows()
plot(desert_mouse.p1.mm1, main="desert_mouse")

# P-values
(desert_mouse.p1.mm2 <- pmmeans(desert_mouse.p1, specs=c( "BeforeAfter", "Area_2"), 
transform="response"))
(desert_mouse.pw <- summary(pairs(desert_mouse.p1.mm2)))
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1:25

Page 122

Other Resources
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Further Assistance: Sydney University

SIH
– 1on1 Consults can be requested on our website: 
www.sydney.edu.au/research/facilities/sydney-informatics-hub.html OR Google “Sydney Informatics 
Hub” with the “I’m feeling lucky” button
– Training Sign up to our mailing list to be notified of upcoming training: 

https://signup.e2ma.net/signup/1945889/1928048/
– Research Essentials
– Experimental Design
– Power Analysis

– Online library. Useful links and the most recent version of all our workshops.
– https://sydney-informatics-hub.github.io/stats-resources/

– Hacky Hour
www.sydney.edu.au/research/facilities/sydney-informatics-hub/workshops-and-training/hacky-
hour.html OR Google “Sydney Hacky Hour”

OTHER
– Open Learning Environment (OLE) courses

– Science: OLET5608 Linear Modelling: Exploratory data analysis, sampling, simple linear regression, t-tests 
and confidence intervals. Ability to perform data analytics with coding, basic linear algebra.

– Business: BSTA5007 Linear Models 
– Many others, and constantly changing, so have a look at what is available by getting the list and searching for 

key words such as linear, regression, GLM, ANOVA, etc.
– Linkedin Learning: https://linkedin.com/learning/

– SPSS https://www.linkedin.com/learning/machine-learning-ai-foundations-linear-
regression/welcome?u=2196204

‹#›
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Other SIH workshops

Linear Models 1: Basic intro to Linear models with a normal (gaussian) 
error. Example workflows for Simple Linear Regression, ANOVA, 
ANCOVA, mixed models.

Linear Models 2: Extends the Linear Model framework introduced in 
LM1 to Generalised Linear Models which allow non normal errors and 
responses. Example workflows for Poisson (Count) and Logistic (Binary) 
regression.

Linear Models 3: Shows how to build interpretable models and analyse 
data to extract insightful & impactful patterns which enable you to 
make the impactful discoveries that expand our knowledge, and how to 
craft engaging research stories to communicate those discoveries.

Model Building: LM workshops use simple 1 or 2 predictor examples. 
More than this requires additional Workflow steps and possibly 
different Methods to account for things like Multi-Collinearity. These 
additional topics are covered in this workshop.
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Linear Models 3: How to build interpretable models and 
analyse data to extract insightful & impactful patterns, and 
craft an engaging research story

Statistical analysis is more than just building the best predictive model, it should also enable you to 
make impactful discoveries that expand our knowledge. Constructing engaging narratives about your 
research is also invaluable as you look to connect with your field, the community and funding bodies. To 
do this you need to build interpretable models, test hypotheses, uncover insightful & impactful patterns, 
and present results in insightful, intuitive and memorable ways. In this workshop we explore tips and 
tricks to make your research do just that. Topics covered will be:
– Building impactful real-world recommendations and guidelines – i) why we need to understand both 

stated and model derived importance, ii) how Quadrant Analysis uses both variable performance 
and importance to develop impactful real-world recommendations and guidelines.

– Reporting tricks that extract insightful & impactful patterns and craft engaging stories – i) establishing 
the importance of a predictor/risk factor, ii) confidence vs prediction intervals, iii) applying and 
correcting for multiple comparisons, iv) testing different hypothesis using different model 
parameterisations of the design matrix, v) interpreting categorical predictors - dummy vs effects 
coding and estimated marginal means, plus other reporting and interpretation tricks.

– Building interpretable models – it’s quite common for researchers to incorrectly use model 
parameters to establish variables ‘impact’ or ‘importance’ . We show how multi-collinearity 
prevents this interpretation, and how to assess and then fix it so parameters can be used to 
identify important predictor/risk factors and other insightful patterns.

– Mixed models – extend the Linear Model 1 intro to: i) better explain how mixed models work, ii) 
use them to test population wide hypotheses outside your sampled groups, and iii) use a random 
slope (with examples of the patterns it can explain and hypotheses it can test).

– Using data visualisation to report complex nonlinear models graphically and aid pattern extraction
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Further Assistance

‹#›

VIDEOS
• StatsQuest with Josh Starmer

• Linear Models: 
https://www.youtube.com/playlist?list=PLblh5JKOoLUIzaEkCLIUxQFjPIlapw8nU

• What is a Statistical Model https://www.youtube.com/watch?v=yQhTtdq_y9M
• Logistic Regression: https://www.youtube.com/watch?v=yIYKR4sgzI8

• Zedstatistics, longer videos than StatsQuest. https://www.youtube.com/c/zedstatistics

WEBSITES
• R GLMM FAQ https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

BOOKS AND PAPERS
• Julian J Faraway (2006) Extending the Linear Model with R. Chapman & Hall.
• John Fox (2008) Applied Regression Analysis and Generalized Linear Models. Sage.
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Tricks to learning – R, linear models, SPSS, etc 
– The trick is doing a little bit everyday and getting really good at it so by 

the time you get to actually needing R you are comfortable in it.

– When working an actual problem let yourself ‘process’ problems overnight. 
I’ve lost count of the time times I have battled for hours only to wake up 
the next day and nail it.

– As tempting as it is. Don’t just google stuff, if you get to know your books 
and references it will give you a broader understanding, which will help 
you in the long run.

– Create an R script with your ‘training code’. So as you read the book jump 
into R and try stuff out. Get used to creating sample data to test stuff out.

– And I’ll leave you with a paraphrased quote from one of the R guru’s 
Hadley Wickham “Frustration is good, it means you’re at the edges of 
your understanding and are learning!!”
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R: Where to start
BOOKS
– Find an intro R book

– Read it a little bit everyday, try and get a routine going such as a little at breakfast, 
before bed, whatever. 

– I like this one for a good intro that includes a lot of statistical methods
– R in Action by Robert I Kabacoff 
– It also has a great web page resource which is a good first port of call too

• https://www.statmethods.net/
• Buy through Web site for a discount

– Only downside is that it doesn’t use Hadley Wickhams packages, so I would also 
recommend one of his. In particular R for Data Science gives a great intro to 
data wrangling and visualisation using his packages. 

– Finally I recommend MASS (Modern Applied Statistics in S) by Veneables and 
Ripley. The ‘Yellow Bible’. It has at least a little bit on pretty much any statistical 
method you can think of. I tend to start here to get an intro on what R can do and 
then research outwards.

ONLINE 
– Lots of short (and long) YouTube courses

– A series of short videos on Logistic Regression 
https://www.youtube.com/playlist?list=PLblh5JKOoLUKxzEP5HA2d-Li7IJkHfXSe
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Acknowledging SIH

‹#›

All University of Sydney resources are available to Sydney 
researchers free of charge. The use of the SIH services including the 
Artemis HPC and associated support and training warrants 
acknowledgement in any publications, conference proceedings or 
posters describing work facilitated by these services.

The continued acknowledgment of the use of SIH facilities ensures the 
sustainability of our services.

Suggested wording:
General acknowledgement:
"The authors acknowledge the technical assistance provided by the Sydney Informatics Hub, 
a Core Research Facility of the University of Sydney."
Acknowledging specific staff:
“The authors acknowledge the technical assistance of (name of staff) of the Sydney 
Informatics Hub, a Core Research Facility of the University of Sydney.”
For further information about acknowledging the Sydney Informatics Hub, please contact 
us at sih.info@sydney.edu.au.
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We value your feedback

‹#›

– We will email you a link to the survey shortly

– It only takes a few minutes to complete (really!)

– Completing this survey is another way to help us keep 
providing these workshop resources free of charge
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