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We value your feedback

– We aim to help HDR students and researchers in a wide range 
of fields across different faculties

– We want to hear about you and whether this workshop has 
helped you in your research.

– Later in this workshop there will be a link to a survey
– It only takes a few minutes to complete (really!)
– Completing this survey will help us create workshops that best 

meet the needs of researchers like you
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During the workshop

– Ask short questions or clarifications during the workshop. There 
will be breaks during the workshop for longer questions.

– Slides with this blackboard icon are mainly for your reference, 
and the material will not be discussed during the workshop. 

Challenge Question
– A wild boar is coming towards you at 200mph. Do you:?

– A. Ask it directions
– B. Wave a red flag
– C. Wave a white flag
– D. Begin preparing a trap
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After the workshop

These slides should be used after the workshop as Workflows and 
reference material.
– Todays workshop gives you the statistical workflow, which is 

software agnostic in that they can be applied in any software.
– There are also accompanying software workflows that show 

you how to do it. We won’t be going through these in detail. 
But if you have problems we have a monthly hacky hour where 
people can help you.

1on1 assistance
– You can email us about the material in these workshops at any 

time
– Or request a consultation for more in-depth discussion of the 

material as it relates to your specific project. Consults can be 
requested via our Webpage (link is at the end of this 
presentation)
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Research Workflow

– Why do we use a research workflow?

– As researchers we are motivated to find answers quickly

– This drive can cause problems if we don’t think systematically

– … and we need to in order to:
• Find the right method
• Use it correctly
• Interpret and report our results accurately

– The payoff is huge, we can avoid mistakes that would affect 
the quality of our work and get to the answers sooner

– So… what is a workflow?

– The process of doing a statistical analysis follows the same general “shape”.

– We provide a general research workflow, and a specific workflow for each major step in your 
research 
(currently experimental design, power calculation, analysis using linear 
models/survival/multivariate/survey methods)

– You will need to tweak them to your needs
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General Research Workflow

1. Hypothesis Generation (Research/Desktop Review)
2. Experimental and Analytical Design (sampling, 

power, ethics approval)
3. Collect/Store Data
4. Data cleaning
5. Exploratory Data Analysis (EDA)
6. Data Analysis aka inferential analysis
7. Predictive modelling
8. Publication
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CONTENTS: Linear Models I - An Introduction

A Statistical Workflow for most Linear Models, software agnostic 
– Applicable in any software
– There is accompanying R code if you wish to do it in R. Plots are 

done using a combination of default plotting functions and ggplot 
functions. You will know the difference since ggplot functions start 
with ggplot().

Applied workflows to 4 of the most common analyses on a continuous 
response:
– Simple Linear Regression (continuous predictor)
– ANOVA on Control vs Treatment (categorical predictor)
– Continuous and categorical predictor (ANCOVA example)
– Repeated measures

The first example introduces the basic concepts and workflow so we 
don’t show you how to do it in R or SPSS. Subsequent examples will 
have R code.
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What are Linear Models?

ANOVA

ANCOVA

Linear Regression

Before After Control 
Impact (BACI) Studies

Logistic regression

Count regression

Randomised Control 
Trials (RCT’s)Repeated measures

Plus Many More!!
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A Single Unifying Theory

Regression and ANOVA are often taught as different things. Yet 
they aren’t!

An easier way to understand them is with the single unifying 
Linear Models theory. 

This allows us to apply them using the same workflow.
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Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.
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Step 0) Clean and check data

– Is covered in “Research Essentials”, not this workshop.
– Is very important, so ensure you do it! 
– Get in the habit of checking the data every time you open it by 

looking at the corners i.e. start at the top left corner, then scroll 
to the far right corner, scroll down to the bottom right corner, 
scroll left to the bottom left corner, then finish by scrolling pack 
up to the beginning top left corner. 
– Weird things can happen. New versions, a stray cosmic ray. I have 

literally opened data to find it corrupted, and then reopened it and it’s 
fine. Similarly I have seen weird results only to rerun them to find them 
OK.  
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Simple Linear Model
Continuous response and predictor

Workflow Suitable for:
• Modelling continuous predictors (workflow shown is for 1 predictor, there 

are additional considerations when more than 1 e.g. multicollinearity, these are 
discussed in our Model Building workshop)

• Least Squares Regression
• Simple Linear Regression
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Simple Linear Model

Your Turn: Draw a linear 
model for the weight of 
chicken compared to the 
amount of feed it eats in 
its first month.

So in this example a 
chicken that eats 6 kg of 
Feed will weigh about 
4kg
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So we know it’s linear. Is that all we need to know?

And for that we need to fit an equation to the pictorial 
model you just drew so we can pull out the parameter 
that represents the Predictors affect on our Response.

High School Equation for a line
Y = slope (aka gradient) * X + Constant (aka Y intercept)

Y = mX + b

Statistical Equation for a line (puts the constant first)
Yi
෡ = 1Xi

So we want to find 1, which is the slope(gradient) of 
the line and represents the effect Feed has on Weight. 
(is the constant)

NO! We want to know exactly how our Predictor 
(feed) affects our Response (weight).
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But we’re still missing something?
THE DATA!!!!!

Each datum has it’s own natural variance from the line since each chicken is a bit different!

Another name for the Natural Variance is the “Error” of the model. Which is why we usually 
represent it as an in the model.

MODEL FOR OUR DATA
Yi = Yi

෡ + i = 1Xi+ i

MODEL FOR A LINE
Yi
෡ = 1Xi

Y෠ ~ The “hat” 
over the Y෠ tells us 
that it’s a 
prediction of Y 
for those specific 
predictor values 
for X. 

Y ~ Is the actual 
value of Y, so it’s 
the prediction + 
error.
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So how do we use this equation to understand the 
relationship between our predictor and response?

We look at the Parameter estimates of the model.

95% Confidence IntervalP valueT scoreSEEstimateParameter

Upper BoundLower Bound

1.30.82.24e-117.60.1361.03Constant / 
Intercept ()

0.540.45<2e-1621.80.0230.50Feed ()

Model Fit is  Yi = Xi1 + i      Weight = 1.03 + 0.50 * Feed + i 

Notation 2.24e-11 means move the decimal place to the left 11 
places i.e. 2.24e-11 = 0.0000000000224. It is done so we can 
write small numbers concisely. 
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So how do we use this equation to understand the 
relationship between our predictor and response?

We look at the Parameter estimates of the model.

95% Confidence IntervalP valueT scoreSEEstimateParameter

Upper BoundLower Bound

1.30.82.24e-117.60.1361.03Constant / 
Intercept ()

0.540.45<2e-1621.80.0230.50Feed ()

Model Fit is  Yi = Xi1 + i      Weight = 1.03 + 0.50 * Feed + i 

First we look at the constant (), to ensure it’s needed and there 
is nothing weird going on. So we can say:
– It is likely different to 0 (since p=2.24e-11 which is very 

small so it is very unlikely we are making the wrong decision 
if we say this).

– It is likely somewhere between 0.8-1.3.
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So how do we use this equation to understand the 
relationship between our predictor and response?

We look at the Parameter estimates of the model.

95% Confidence IntervalP valueT scoreSEEstimateParameter

Upper BoundLower Bound

1.30.82.24e-117.60.1361.03Constant / 
Intercept ()

0.540.45<2e-1621.80.0230.50Feed ()

Model Fit is  Yi = Xi1 + i      Weight = 1.03 + 0.50 * Feed + i 

Next, we investigate if there is an association between Feed and 
Weight which is represented by 
– It is likely different to 0, (since p<2e-16  which is very small so it is 

very unlikely we are making the wrong decision if we say this).
– The effect is likely somewhere between 0.45-0.54. Or in other 

words for each extra kg of Feed eaten we expect a chicken to 
weigh between 0.45-0.54 kg more. 
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So, is that all we need to do? Is our Analysis finished, 
can we now write up our conclusions?

NO, because Computers are Stupid!!

Because a computer will fit any model you tell them to even if:
– It’s a bad fit to the data
– It’s a stupid fit to the data

So it’s up to YOU to decide if the model you are asking the computer to 
fit to your data is the right type and a good fit.

Because if it’s a bad fit, then the parameters and conclusions we draw 
from them will be wrong. And there is little in the previous  parameter 
table to warn you of this!!!!! So we need to look at other things.
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Your Turn: Draw the best fit to this data

Page 22

Your Turn: Draw the best fit to this data

Hopefully You drew this. 

Now draw a linear fit.
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Your Turn: Draw the best fit to this data
Which model do you think a computer fits if you ask it to do a 
linear regression?

The wrong (linear) one! Because Computers are Stupid.
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This is just one example from Anscombe’s Quartet, 4 
data sets all with the same linear fit. But only one is 
actually linear.
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So how do we decide if the model we are asking the 
computer to use is a good enough fit to the data that 
the parameters, and the conclusions we make from 
them, make sense?
1) Exploratory Data Analysis (EDA)

1) Plot the data to look for linearity (response vs predictor), correlation (serial plots), non-normality 
(histograms/kernel density plots), etc.

2) DO NOT SKIP THIS STEP. It gives you an understanding of  the data which allows you to find common 
problems, select an appropriate model, and Common Sense Check your model, its assumptions and 
conclusions. Skipping this step is one of  the most common problems we see in consults.

2) Check Model Assumptions via Diagnostics
1) Linearity
2) Normal Error
3) Independence

3) Check Model Goodness of Fit
1) How much of the response variance does the model explain?
2) Is the model a good fit of the data overall, or is it biased towards explaining just a couple datum?

Page 26

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)
Linearity: Draw A Graphical model of the data
1. Simply plot the data and have a look. Is a linear model a good 

fit to the data?
2. Try to write down the model you want to fit as well. This will help 

you interpret what the Parameters mean, particularly for 
complicated models.
– Yi = Xi1 + i 
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Independence: Consider your experimental design
Is there anything about it that might lead to datum being correlated with each 
other. For example, if we had repeated measures on the same patient (chicken) 
then we would expect these to be correlated i.e. dependant on each other.

Modelling independence correctly is important for 3 main reasons:
1) Ensures the correct sample size is used. For example if I measured the 

chickens weight 100 times a second for 60 seconds do a really have 6000 
samples per chicken? NO, of course not. Because the 6000 samples aren’t 
independent. This is known as Pseudo Replication and inflates our sample 
size, lowering our standard errors and making our p-values too low and 
confidence intervals too narrow. 
1) This is one reason for the replication crisis i.e. artificially low p-values.

2) Partitioning out extra sources of error/noise which makes our analysis 
more accurate, which is done using mixed models for designs such as split-
plots, blocked, repeated measures.  

3) Structural correlation that should be added to the model e.g. serial 
correlation such as auto-regressive correlation. 
1) Stock prices are independent day to day (since something can happen to change 

their price) but are heavily dependent on the prior days price.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Independence: Consider your experimental design
Is there anything about it that might lead to datum being correlated with each 
other. For example, if we had repeated measures on the same patient (chicken) 
then we would expect these to be correlated i.e. dependant on each other.

Modelling independence correctly is important for 3 main reasons:
1) Ensures the correct sample size is used. For example if I measured the 

chickens weight 100 times a second for 60 seconds do a really have 6000 
samples per chicken? NO, of course not. Because the 6000 samples aren’t 
independent. This is known as Pseudo Replication and inflates our sample 
size, lowering our standard errors and making our p-values too low and 
confidence intervals too narrow. 
1) This is one reason for the replication crisis i.e. artificially low p-values.

2) Partitioning out extra sources of error/noise which makes our analysis 
more accurate, which is done using mixed models for designs such as split-
plots, blocked, repeated measures.  

3) Structural correlation that should be added to the model e.g. serial 
correlation such as auto-regressive correlation. 
1) Stock prices are independent day to day (since something can happen to change 

their price) but are heavily dependant on the prior days price.

Experimental Design workshop covers these topics, how to optimise designs to 
include them and hence have more accurate analysis and results.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)
Independence: Plot the data using a “Serial Plot” i.e. data 
plotted 1 after each other
This is simply a plot of the data, one after each other, as 
recorded in your data. You are looking for unexplained sequences 
of high or low values i.e. unexplained correlations. 
– You can also organise your data into different structures to look 

for different types of dependence e.g. if repeated measures 
then organise so each persons (chickens) data is sequential.

– You can also plot lag correlations.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Normality
This is a very poorly understood assumption. The assumption is 
that the Error, not the Response is normal. Meaning we can’t test it 
until we fit a model. So don’t make the mistake of thinking just 
because your data isn’t normal this assumption has been violated.

What we can do is consider exactly what it is we are modelling 
and also look at the response using a histogram to see if a 
normal error might not fit. Obviously if the response looks normal 
there is a good chance the errors will be too. However, a non-
normal response can have a normal error (which I will show you 
when we look at ANOVA).

The main thing we are looking for here are things that usually 
prevent the error from being normal and are better fit using 
different models such as the response being non continuous (e.g. 
binary or counts), extreme outliers, extreme skewness, and 
truncation. 

It’s worth noting that discrete data can be modelled using a 
normal error under some circumstances e.g. weight rounded to the 
nearest gram is technically discrete, but can be fit using a normal 
error. Counts can also be fit using a normal error if large enough.
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Minor deviations from normality are OK

These models are very robust to minor deviations from normality.

When looking at the residual quantile plot the data does not need 
to be exactly on the 1:1 line. Which is why I suggest looking at the 
histograms and density plots, as they are more intuitive when 
assessing the residuals distribution.

Be very wary of using significance tests such as Shapiro-Wilk and 
Kolmogorov-Smirnov to evaluate if the residuals are non normal as 
they often detect statistically significant differences, that are so 
small as to not matter. This is particularly a problem with large 
sample sizes as they can detect very minor deviations from 
normality that have no real impact.

Page 32

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Outliers
This is a also very poorly understood assumption. We want a 
model represent the bulk of the data. We don’t want it biased 
towards 1 or 2 outlying influential points. Just like checking the 
normality assumption we can only test this for sure once we have 
fit a model. However, it is always worth looking at all our data to 
see if there are any outliers we might need to deal with. The best 
way to do this is via histograms or boxplots.
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Fixing Model Assumption Problems

Outliers
1. Check to see if they are a data entry or collection mistake and 

can be removed.
2. Consider transformations that reduce their influence e.g. log 

transforms will reduce the influence of large outliers. 
3. Consider removing them to get a model that is a better fit to 

the majority of the data. If this is done one must say so in any 
reporting. For example: looking at the Anscombe example on 
the right. What is a better model. A line through the datum in a 
straight line, while saying there was a single large outlier. Or 
the red line shown?

4. Consider other models that can handle the outliers.
e.g. quantile regression.
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Fixing Other Model Assumption Problems
This is a complex business and is beyond the scope of this workshop. It is covered in more detail in 
other Linear Model courses we give. The quick answer is that you will usually need to use a different 
model. In brief:

Non linear fit
1. Add in quadratic and non linear terms for either the predictors or the response (GLM’s can 

add such terms for the response via the link function as Discussed in Linear Models II.).
2. Use a non linear model such as a General Additive Model (GAM).

Normal error is inappropriate
1. Use a different type of linear model. A Generalised Linear Model (GLM) with a different error 

distribution often works e.g. binomial for binary data (logistic regression), Poisson for count 
data. Discussed in Linear Models II. Distributional regression should be explored if a GLM won’t 
work as it can fit a wider range of distributions.

Lack of Independence
1. Fit a mixed model that accounts for the correlation structure. Discussed in Linear Models I and III.
2. Remove datum until they are independent (also known as censuring).
3. Average the independent data e.g. average the 6000 chicken weights so we have a single 

score. Has the advantage of also usually making the data normally distributed, by invoking the 
Central Limit Theorem (CLT)

Five extensions of the general/simple linear model which may help
https://www.theanalysisfactor.com/extensions-general-linear-model/

33

34



19/03/2025

18

Page 35

Fixing Other Model Assumption Problems
Distributional Regression: regression beyond the mean

Distributional Regression models extend GLM’s in 2 ways:
1. Fit a wider range of distributions
2. Can model not just the mean but other properties such as the variance 

and skewness i.e. moments, of a variety of different distributions. 
Allowing us a flexible way to overcome the assumption violations of 
other models.

It also becomes useful if we think these other moments are dependent on an 
explanatory variable.

Looking only at the mean (with LM, GLM, GAM) might miss the bigger 
picture: For example, a treatment effect on the variance of blood pressure.

Taking the data set on the right as an example:
– A GLM would try to fit a line to it.
– A GAM would fit the curve, but not capture

the wider variance in the middle.
– While Distributional Regression provides a

good fit (as visualized).
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Not only is average wage associated with education 
level, but so is the expected range of income.

With Distributional Regression we can quantify how the income 
variability changes with education level.

Knowing there is higher variability in different groups can be important 
when making policy decisions e.g. one might need a wider range of 
options for those groups with more variability. It allows the predicted 
distributions for income to have different widths for each education 
level, making the overall 
95% CI for the mean more 
accurate.
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Austrian rainfall predictions

Using distributional regression, we can see that there is a spatial effect on the mean 
precipitation, and also on precipitation variability.

Knowing there is higher variability in rainfall is important when making 
infrastructure and agricultural decisions. If 2 areas have the same average rainfall, but 
one got that rainfall consistently while the other had drought years this means that the 
former is good for perennial tree crops like citrus, almonds, etc. While the latter is better 
for annual crops like wheat, and would also benefit with a more regulated river system 
(i.e. dams to store water).
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Software

R packages:
– gamlss (vast variety of distributions) - recommended
– bamlss (Bayesian Distributional Regression)
– VarReg
– mgcv (for select distributions)
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References

– Hohberg M, Pütz P, Kneib T. Treatment effects beyond the mean 
using distributional regression: Methods and guidance. PLoS One. 
2020 Feb 14;15(2):e0226514. 

– Heller GZ, Robledo KP, Marschner IC. Distributional regression 
in clinical trials: treatment effects on parameters other than the 
mean. BMC Med Res Methodol. 2022 Feb 27;22(1):56. 

– Kneib, T., Silbersdorff, A., & Säfken, B. (2021). Rage against the 
mean–a review of distributional regression 
approaches. Econometrics and Statistics.

Page 40

Step 2) Fit the Model

Use your software of preference to fit the model. 

In R you’d use something like this: 
> regression <- lm(response~predictor.linear1)
> regression <- lm(weight~feed, data=data)
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis
Normality
– The QQ plot is pretty standard, if normal residuals should be along the straight 

1:1 line. I also like a histogram and density plot since these are easier to see the 
actual distribution and diagnose problems.
– QQ plots are very sensitive. In this example we know the underlying error is normal (since 

we simulated it) yet one might not think that from the QQ plot. 
– Formal significance tests e.g. Shapiro-Wilk and Kolmogorov-Smirnov are 

notoriously over sensitive, do not rely on them. They often detect deviations 
from normality that are not severe enough to substantively impact model 
interpretation. 

– Linear models are very robust to the normality assumption.
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Non-normal Error Example 1

Often fixed by fitting a non normal error, transformations or adding 
new predictors that account for the non normality. In this example a 
natural log of the response fixed the problem.

https://smartersolutions.com/multiple-regression-dealing-with-non-normal-residuals.html/
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Non normal error Example 2: Heteroscedasticity i.e. 
variance not constant

Left graph: residuals showing heteroscedasticity. 
https://statisticsbyjim.com/regression/heteroscedasticity-regression/
Right graph: raw data with heteroscedasticity, and a linear model. 
https://en.wikipedia.org/wiki/Homoscedasticity_and_heteroscedasticity

Common with count, rate and concentration data as we expect a count of 10000 to have 
higher variance than a count of 1. Often fit with a GLM and Poisson distribution as discussed in 
Linear Models II. Can also be fixed by log transforming the response when fitting a normal 
error.
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Step 4) Goodness of Fit: Residual Analysis
Is there any unexplained structure, non linearity or non constant 
variance?
– We want to see our residuals randomly scattered about zero since 

this indicates a fit that is: 
– consistent across the different predicted, response and predictor values. 
– with no unexplained structure our model has missed.

– Patterns can indicate:
– Missing predictors
– Incorrect Error
– Non linear fit e.g. quadratic

– No evidence of non constant 
Variance i.e. heteroscedasticity.

Any Outliers
No
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Non Linear Fit Example 1: Residuals when a linear 
term is fit to a quadratic pattern

https://quantifyinghealth.com/quadratic-term-in-regression/

Left graph: EDA on raw data, which shows the need for a quadratic fit.
Middle graph: residuals with a linear fit. Problematic as not random about zero.
Right graph: residuals with quadratic fit. Good fit as random about zero.
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Influential Outliers

Some outliers have a greater influence on the model than others. These 
are known as influential outliers. They are outliers which have:
– High error i.e. when not used in the model their prediction is very 

different. 
– High leverage i.e. they have a large impact on the model 

parameters.

Cooks Distance: a large cook’s (d) indicates that the data point strongly 
influences the fitted values. 
– To compute:

1. Delete observations one at a time.
2. Refit the regression model on remaining (n−1) observations
3. Examine how much all of the fitted values change when the ith observation 

is deleted.
– In terms of what values are high enough to warrant concern. 

– A general rule of thumb for ‘large n’ based on cooks distance following the 
F distribution is too keep an eye on values > 0.5 and view those >1 with 
concern. However there are other thoughts on this.
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Influential Outliers

All points within the Cooks distance 
red dotted lines - so no evidence 
of influential outliers. 
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Sensitivity Analysis

If you think an outlier might be having an undue influence or is 
impacting normality then do a sensitivity analysis.

This is a fancy way of saying you fit the model with and without 
the outlier and see if the model interpretation changes enough to 
be concerned. (Which is what Cooks distance does).

Keep in mind if there are multiple outliers, especially with a small 
sample, that removing a lot of data is changing the model!
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Step 4) Goodness of Fit: Plots and Statistics

So far we have established our model is an appropriate fit to our 
data and there is nothing obvious we have missed. The next 
question is How well does it predict i.e. fit, the data?

This plot is a good visual representation of model fit. If the 
response is being exactly predicted than we expect it to fall 
along the 1:1 line.

The correlation along this line is the most 
commonly used Goodness of Fit Statistic: 
called R2. It is literally the correlation of the 
response and prediction squared. And 
represents the % of the responses variation 
the prediction i.e. model, explains. In this 
example it is 88%.

Page 50

What is a ‘good’ R2?

It’s totally domain specific, so take your benchmark from similar 
published work. It depends on how much natural variation we 
expect in the system. For example:

– Market Research Consumer Purchase Intent and Liking: 70-90%

– Ecological Communities: anything over 20% is fabulous!!
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Why is a high R2 bad: Overfitting leads to poor 
predictive power

We want our model to be a good representation of the underlying population 
so we can infer what is happening outside our sample. And when doing 
prediction for the predictions to be accurate. 

When R2 is too big it suggests we have fit some of this samples unique  
noise/error/variation along with the population signal. So although it is a good 
fit to this sample, it will be a poor fit to other samples and the population.

This is called Overfitting.

I question anything with an R2 of greater than 90%. But again its domain 
specific, if I had ecological community data model with an R2 of greater than 
80% I’d be checking for overfitting.

https://medium.com/@minions.k/underfit-
and-overfit-explained-8161559b37db

Page 52

Minimum Sample Size: 10 data points per parameter

A common cause of overfitting is having too many predictors 
compared to data points. This can also lead to unstable 
parameters with high SE.

A common rule of thumb to prevent this is to have at least 10 data 
points per parameter. Don’t forget the intercept is a parameter 
too!

EG: A simple linear regression with 1 predictor has 2 parameters 
(constant plus the predictors slope parameter) so usually requires 
20 observations. 

Refer to our Power and Sample Size workshop for more information on sample 
size considerations
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Page 53

Step 5) Interpret Model Parameters and reach a 
conclusion

FINALLY!! We can actually have a look at our model and see what 
it is telling us. 

Realistically most people, including me, often do the EDA plots, 
pick the model they think best suits the data, plot it and then look 
at this model summary first. 

And then go back to do all the above due above model due 
diligence. 

Which is understandable, but just make sure you do it!!

Page 54

So how do we use this equation to understand the 
relationship between our predictor and response?

We look at the Parameter estimates of the model.

95% Confidence IntervalP valueT scoreSEEstimateParameter

Upper BoundLower Bound

1.30.82.24e-117.60.1361.03Constant / 
Intercept ()

0.540.45<2e-1621.80.0230.50Feed ()

Model Fit is  Yi = Xi1 + i      Weight = 1.03 + 0.50 * Feed + i 

53

54



19/03/2025

28

Page 55

Step 6) Reporting: Overall Conclusion suitable for 
publication

Always include these 2 things
1) Interpret the model and what it means for your research
There is strong evidence to show that feed influences weight (p<2e-16), 

with each kg of feed adding between 0.45-0.54 kg of weight (95% 
CI). This effect on weight has been estimated very accurately [as 95% CI 

is quite narrow].

2) Show that the model is a good fit and assumptions 
have been tested and met

The model is a good fit to the data with an R2=88%. There were no 
outliers or unexplained structure. The error was normal.

And when giving a p-value always give an estimate of the effect 
size as well i.e. the 95% CI.

Page 56

Step 6) Reporting: Overall Conclusion suitable for 
publication

So a suitable write up would be as follows
“There is strong evidence to show that feed influences weight 

(p<2e-16), with each kg of feed adding between 0.45-0.54 kg 
of weight (95% CI). This effect on weight has been estimated 

very accurately [as 95% CI is quite narrow].

The model is a good fit to the data with an R2=88%. There were 
no outliers or unexplained structure. The error was normal” 
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Page 57

A Conversation is 
better than a 
Presentation

So please speak up and ask questions!

People think differently. 
So I may need to explain 
things in 2 or 3 different 

ways!

Page 58
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Page 59

ANOVA: ANalysis Of VAriance
Continuous response, categorical predictor

Workflow Suitable for:
• Modelling discrete predictors (workflow shown is for 1 predictor, 

there are additional considerations when more than 1 e.g. Confounding, 
these are discussed in our Model Building workshop)

• Control vs Treatment designs
• Randomised Control Trials (RCT)

Page 60

Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.
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Page 61

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Your Turn:
We have a chicken feed experiment where we added a protein 
supplement. 
We expect the Control to have an average of 3kg, and the 
Treatment to add 0.5kg to weight. With a SE(mean) = 0.05 i.e. 
95% of data is within 0.10 of the mean.

Plot the data!!

Page 62

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

ggplot(data = data1, aes(x=treatment, y=response)) +
geom_point(pch=21) +
labs(x="Treatment", y="weight (kg)")
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

ggplot(data=data1, aes(x=treatment, y=response))+
geom_boxplot() +
labs(x="Treatment", y="weight (kg)")

This is an 
ANOVA: which is 
a type of Linear 
Model.

This may not look 
like a linear 
relationship, but it 
is a linear model. 
I will explain why 
later.

Boxplots need at 
least 12 datum. If 
not enough use dot 
plots as per the 
previous slide.

Page 64

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Independence: Consider your experimental design
Your Turn:
Is there anything about this design that might lead to datum being 
correlated with each other? For example, if we had repeated 
measures on the same patient (chicken) then we would expect 
these to be correlated i.e. dependant on each other.

YES! Chickens in the same treatment might be correlated, but our 
model will account for that since it’s fitting a different mean to the 
control vs treatment. 

Other reasons might be: Blocked design, Split-Plot design, etc.
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Page 65

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Independence and Outliers: Plot the data using a Serial Plot

plot(data1$response, main="Weight (kg)")

Notice the serial correlation 
i.e. data at the start are 
more similar to those at the 
end. As control data are at 
the beginning and 
treatment at the end this is 
expected. And our model 
will account for that. 

No Outliers

Page 66

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Normality and Outliers 
The combined data is clearly bimodal and 
is certainly not normal!!!

YR Turn: So do we have a problem??

NO: The error needs to be normal, not 
the response. And as we can see here the 
error about the mean of each treatment is 
roughly normal. 

(Even though the control might not look like 
it we know it is since its simulated data. A 
good example of just how non–normal 
something can look and we’re still OK).

par(mfrow=c(2,2))
hist(data1$response, main="All Data (weight kg)")
hist(data1$response[data1$treatment=="Control"], main="Control only (weight (kg)")
hist(data1$response[data1$treatment=="Treatment"], main="Treatment  (weight (kg)")
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Page 67

Step 2) Fit the Model

R Code:

lm.anova <- lm(data1$response~data1$treatment)

Page 68

Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

Normality

par(mfrow=c(2,2))
plot(lm.anova)

Residuals appear normal.
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

Normality

par(mfrow=c(2,2))
hist(lm.anova$residuals, main="Histogram of Residuals")
plot(density(lm.anova$residuals), main="kernel Density plot of Residuals")
rug(lm.anova$residuals)

Residuals appear normal. 

Page 70

Step 4) Goodness of Fit: Residual Analysis

Outliers and unexplained structure or non linearity

par(mfrow=c(2,2))
plot(lm.anova.predict, resid(lm.anova, type="response"), main="Predict vs Resid (Response)") # response residuals
abline(h=0, col="red")
plot(data1$response, resid(lm.anova, type="response"), main="Weight vs Resid (Response)") # response residuals
abline(h=0, col="red")

No evidence of outliers, or unexplained structure or non 
linearity.

We expect the ‘lines’ of data rather than a random ‘cloud’ 
of data which we saw in the regression (bottom right chart). 
This is because rather than a range of predictions for each 
different value of the predictor (feed) we only get 1 
prediction for control and another for treatment, hence 2 
vertical lines in the upper chart. 

And 2 diagonal lines in the bottom chart when the x axis is 
the actual response since these are different.

The greater the difference between the 
groups the further these lines are apart. 

For comparison Linear 
Regression looks like this
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Page 71

CQ: If I had 4 treatments, how many lines would I 
have?

A. 2 lines
B. 4 lines
C. 8 lines
D. 12 lines

Correct, 1 line for each treatment

Page 72

Step 4) Goodness of Fit: Plots and Statistics

plot(data1$response, lm.anova.predict, main="Response vs Prediction 
(Fitted)", xlab="Weight (response)", ylab="Predicted Weight")
abline(a=0, b=1, col="red")

For the same reason used previously we 
expect 2 lines of data here, not a cloud of 
points i.e. we only have 2 prediction.

We expect the 2 lines of data to be 
centred on the red line. 

If they aren’t this suggests there is some 
bias to the fit worth investigating further. 

For comparison Linear Regression looks like this
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Page 73

Step 5) Interpret Model Parameters and reach a 
conclusion

R CODE and output used to create Tables 
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Step 5) Interpret Model Parameters and reach a 
conclusion

95% Confidence IntervalP valueT scoreSEEstimateParameter

Upper BoundLower Bound

3.012.98<2e-164340.00693.00Constant / 
Control ()

0.530.49<2e-16530.00980.51Treatment 
Effect ()

Model Fit is:
Yi = Xi1 + i (same as the previous linear regression)
Weight = 3.00 + 0.51(if treatment) + i 
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Step 6) Reporting: Overall Conclusion suitable for 
publication

“There is strong evidence to show that the Treatment influences 
weight (p<2e-16). It increases weight by between 0.49-0.53 kg 
(95% CI), from an average of approximately 3 (95% CI=2.98-
3.01). This effect on weight has been estimated very accurately 

[as 95% CI is quite narrow].

The model is a good fit to the data with an R2=97%. There were 
no outliers or unexplained structure. The error was normal” 

When giving a p-value always give an estimate of the effect 
size as well i.e. the 95% CI.

NB: In the real world since R2=97% this is very likely a 
poor model due overfitting. 

Page 76
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Combination of ANOVA and Regression
Continuous response, categorical and continuous predictors

Workflow Suitable for:
• Modelling a combination of discrete and continuous predictors (workflow 

shown is for 1 of each type of predictor, there are additional considerations when more than 1 
e.g. confounding and multicollinearity, , these are discussed in our Model Building workshop)

• Modelling more than 1 regression line
• To test if multiple regression lines are the same, or different.
• ANCOVA: ANalysis of COVAriance
• BACI (Before After Control Impact Designs)

Page 78

Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.
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Page 79

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Your Turn:
Say we wanted to do the previous 2 experiments at the same time.

Plot the data!

Reminder:
Experiment 1
A linear model for the weight of chicken compared to the amount of feed it 
eats in its first month.

Experiment 2
We added a protein supplement. We expect the Control to have an average 
of 3kg, and the Treatment to add 0.5kg to weight. The standard deviation = 
0.05 i.e. 95% are within 0.10 of the mean.

Page 80

“Graphs allow us to view 
complex mathematical models 
fitted to data, and they allow 
us to assess the validity of 
such (statistical) models” 
(Cleveland 1994, author of “The 
elements of graphing data” and

“Visualising data”).
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Page 81

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

So effect of feed is the 
same across treatment and 
control.

But what if they “interact”?

How do we fit this?

Page 82

Yr Turn. But what if the protein supplement boosted 
the impact of feed. What would we see then? Draw it.

Now we see the treatment 
has little impact at the lower 
end feeding.

But as the amount we feed 
them increases it starts to 
have an impact. 

Maybe because at the 
lower end they are only 
getting enough for basic 
development and they need 
more feed to really grow.

plot(data3$predictor.linear1, data3$response, xlab="Feed (kg)", ylab="Weight (kg)", main = "Supplement has an impact on feed's 
relationship with weight")
points(data3$predictor.linear1[data3$treatment=="Treatment"], data3$response[data3$treatment=="Treatment"], col="red")
legend(x="topleft", legend=c("Treatment", "Control"), text.col=c("red", "black"))
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Different Interpretation

Parallel lines (ANCOVA)
We can talk about the consistent impact of 
the: 
– Protein treatment, in terms of the extra 

amount of weight it adds compared to the 
control

– Feed, in terms of the extra amount of 
weight it adds for each kg of feed.

Non Parallel lines
As there is no consistent impact we need to 
talk about 2 different regression lines, each 
with a different impact of feed on weight.

Page 84

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Independence: Consider your experimental design and serial plot
As with the ANOVA we expect there might be dependence within each 
treatment for the response. However the linear predictors (feed) should 
be independent, if they’re not then we have a big problem!

par(mfrow=c(1,2))
plot(data3$response, col=ifelse(data3$treatment=="Treatment","red", "black"), ylab="Weight (kg)") 
plot(data3$predictor.linear1, col=ifelse(data3$treatment=="Treatment","red", "black"), ylab="Feed (kg)") 
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Normality and Outliers 
The combined data is clearly skewed and 
is certainly not normal!!!

Which is what we would expect given that 
both treatments have the same response at 
low Feed, but one of them has higher 
weight at a higher Feed.

If we didn’t include treatment this is an 
example of where our residuals might not 
be normal and it’s because of missing 
structure i.e. treatment.

par(mfrow=c(2,2))
hist(data3$response, main="All Data (weight kg)")
hist(data3$response[data1$treatment=="Control"], main="Control only (weight (kg)")
hist(data3$response[data1$treatment=="Treatment"], main="Treatment  (weight (kg)")

Page 86

Step 2) Fit the Model

R Code:

lm.ancova <-
lm(data3$response~data3$treatment*data3$predictor.linear1)
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

Normality  Residuals appear normal.

par(mfrow=c(2,2))
plot(lm.ancova)

par(mfrow=c(2,2))
hist(lm.ancova$residuals, main="Histogram of Residuals")
plot(density(lm.ancova$residuals), main="kernel Density plot of 
Residuals")
rug(lm.ancova$residuals)
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Step 4) Goodness of Fit: Residual Analysis

Outliers and unexplained structure or non linearity

par(mfrow=c(2,1))
plot(lm.ancova.predict, resid(lm.ancova, type="response"), main="Predict vs Resid (Response)") # response 
residuals
abline(h=0, col="red")
plot(data3$response, resid(lm.ancova, type="response"), main="Weight vs Resid (Response)") # response residuals
abline(h=0, col="red")

No evidence of outliers, or unexplained structure or 
non linearity.

Although we don’t have the diagonal lines we saw in 
ANOVA it is possible. It occurs when the treatment has 
a much bigger effect than the linear predictor.

And notice that the data get’s a little sparse on the 
right, that’s because only the treatment has these high 
predictions, while both of them have the low ones.
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Step 4) Goodness of Fit: Plots and Statistics

plot(data3$response, lm.ancova.predict, main="Response vs Prediction (Fitted)", 
xlab="Weight (response)", ylab="Predicted Weight")
abline(a=0, b=1, col="red")

Looks like a good fit!

Page 90

Step 5) Interpret Model Parameters and reach a 
conclusion

R CODE and output used to create Tables 
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Step 5) Interpret Model Parameters and reach a 
conclusion

95% Confidence 
Interval

P valueT scoreSEEstimateParameter

Upper 
Bound

Lower 
Bound

1.20.51<3e-650.170.86Constant Control ()

-7.9-8.8<2e-16-350.24-8.32Constant Adjustment 
Treatment ()

1.080.96<2e-16350.0291.0Slope Control ()

1.551.39<2e-16370.0391.5Slope Adjustment 
Treatment ()

Model Fit is  Yi = Xi1 XiXi+ i      
Weight = 0.86 + 1.0*Feed – 8.32(if treatment) + 1.5*Feed(if treatment) + i 

Weight of Control (black data in chart) = 0.86 + 1*Feed + i

Weight of Treatment (red data in chart)= -7.46 + 2.5*Feed + i 
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Step 6) Reporting: Overall Conclusion suitable for 
publication

“There is strong evidence to show that feed impacts weight (p<2e-16), with 
each kg of feed adding between 0.96-1.08 kg of weight (95% CI). 

There is strong evidence that Protein supplements have a positive effect on the 
impact of Feed (p<2e-16), increasing its effect by between 1.39-1.55 (95% 
CI), for a total average effect of 2.5kg weight increase for each kg of extra 

Feed. 

This effect of feed on weight has been estimated very accurately [as 95% CI is 
quite narrow].

The model is a good fit to the data with an R2=99%. There were no outliers or 
unexplained structure. The error was normal” 

When giving a p-value always give an estimate of the effect size as well 
i.e. the 95% CI.

NB: In the real world since R2=99% this is almost certainly a 
poor model due overfitting, or some other problem.
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ANCOVA: is a special case of this model

Adjusts for continuous covariates so we get a clean read on the discrete 
predictors impacts. Often used in observational studies to help remove 
the effect of covariates. 

For example: To understand the effect of the protein supplement after 
accounting for the different amount of feed each chicken ate we can 
add feed is a covariate in an ANCOVA. This would account for the 
scenario where chickens that had the supplement happened to eat more 
food and as such weighed more for that reason, not due to the 
supplement.

The key difference is that an ANCOVA makes an additional assumption 
called Homogeneity of covariate regression coefficients; i.e. “parallel 
lines model”. Which states that the regression lines must be parallel, 
i.e. the covariate has the same effect for each treatment. 

Page 94

ANCOVA: is a special case of this model

This allows us to measure the effect of each discrete parameter 
after accounting for the continuous covariate.
For example: The below model shows that the protein supplement 
increases the chickens weight by 0.5 kg, irrelevant to amount of 
feed it ate.

Statistically the Homogeneity of 
covariate regression coefficients; 
i.e. “parallel lines model” means 
the interaction is not required in 
the model.
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ANCOVA: what happens when the homogeneity of 
regression covariates is failed?
Don’t worry! It’s not a big deal. It just means that the covariate doesn’t 
have a consistent effect overall treatments. Meaning we can’t directly 
compare the treatments overall effects with each other and instead 
need to look at each treatments regression line. 

Statistically it’s the same model, but we also include an interaction. 

So rather than the protein supplement 
consistently increasing weight by 0.5kg 
we see it has little impact at the lower 
end feeding.

But as the amount we feed them increases 
it starts to have an impact. 

Page 96

1:10
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Mixed Models: Random Intercept Model
Response is measured more than once on each respondent (observational unit)

Workflow Suitable for:
• Modelling the variance associated with the respondents (observational units). 

Usually gives a more accurate analysis by partitioning out the noise/variance 
associated with the respondents (observational units).

• Repeated Measures
• Longitudinal Analysis
• More advanced workflows suitable for:

• Cluster Designs
• More complex designs with repeated measures on clusters of 

observational units and experimental units
• Variance Decomposition
• Random Slopes
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Model Fitting Workflow

Step 0) Clean and check data. 

Step 1) Pick a suitable model to fit to the data via Exploratory Data 
Analysis (EDA). 

Step 2) Fit the Model

Step 3) Check Model Assumptions via Diagnostics: Residual Analysis

Step 4) Goodness of Fit: Plots and Statistics

Step 5) Interpret Model Parameters and reach a conclusion

Step 6) Reporting

Linear Models 3 and Model Building Workshops have more detail on 
many of these steps.
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Your Turn:

Say we wanted to test the impact of a new drug on white blood cell 
counts in immune deficient people/dogs/Tasmanian tigers/chickens. We 
have 10 “people”, we take 5 measurements before the treatment and 5 
after. 

The white blood cell count is between 1000-7000 cells/micro litre 
(cells/μL). We expect the drug to increase white blood cell count by 
about 500 (cells/μL) to get it into the normal range. And within person 
variance is about 500 (cells/μL) 

Plot the data!

Page 100

Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Notice how the difference 
between people is much bigger 
than the effect of the drug? 

The models so far ignore this 
information.

A Mixed Model that includes 
person as a random effect 
accounts for this. Effectively 
removing this extra variance and 
making the model more accurate. 

This is a classic example of where 
mixed models out perform those 
that ignore this extra info i.e. 
when the difference between 
observational units is bigger than 
the effect we are looking for. 

ggplot(data = data6, aes(x=id, y=response, fill=treatment)) +
geom_point(pch=21) +
labs(x="id", y="Cells (μL)")
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Random Effects Benefits

Often reduce the noise by explicitly accounting for some of it.
– It’s all about signal:noise ratio. If we can reduce the noise then we 

can detect a smaller signal, giving a more accurate model. 
Meaning that when random effects are added to a fixed effects 
model smaller effect sizes can be detected, we get smaller p-values 
for the same size effect and narrower confidence intervals (see 
example at section end).

Estimate the variation amongst units in the population e.g. is their 
more variance between classes, or between students within a class. This 
might have policy and teaching implications (Linear Models 2 has an 
example).

Don’t need to average repeated data to model it, which gives us more 
information.

Can account for imbalance, if correctly modelled. 
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Random Effects Require

A categorical variable (not a continuous one-if your model is 
failing to converge or looks wrong check that this variable has 
been defined as a categorical one, not doing so is a common 
mistake) with a unique level for each sampling/experimental unit 
e.g. a variable called ID where each respondent has it’s own code 
(usually numeric such as ID1, ID2, ID3, etc)

Multiple observational units and repeated measures for each. 
We generally need at least:

– 2 repeated measures within each observational unit
– 5 observational units (so we can estimate their variance)
– So a minimum of 10 to fit each random effect
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Random Effects: A more efficient use of your data
Say we want to understand the effects of new fishing nets on bycatch but remove the effect of 
different boats due to different levels of experience, technology and size. We have randomly 
sampled 10 boats from the entire NSW East Coast Fleet and measured the amount of bycatch from 
each for 2 treatments (existing and new nets).

We will always need at least 20 datum to estimate the effect of the 2 treatments (using the rule of 
thumb of 10 observations per fixed parameter).

The question is how much sample do we need to remove the effect of each boat's differences?
– If we include each boat as a fixed effect i.e. old school blocking, then we need approximately 

10 additional parameters (1 for each boat). 
– For a total of 120 datum. Using the rule of thumb of 10 datum per fixed parameter we would need 100 

for the 10 boats and 20 for the 2 treatments. However, technically we only need 11 parameters and 110 
datum since we need 1 for the constant/control for Boat A, 1 for the treatment, and 9 for the other boats main 
effects. 

– But if we simply want to estimate the variance between the boats then all we need is 1 extra 
parameter, their variance as a random effect. We can do this by treating these boats as a 
random sample of all boats and since we don’t really care what each got.
– For a total of 20 datum (using the rule of thumb for 10 datum per fixed parameter we need 20 for the 2 

treatments, and using the rule of thumb of a minimum of 5 boats with 2 repeated measures to estimate the 
variance). Note that this is a simple non additive example, some might say we actually need 30 datum as we 
are effectively estimating 3 parameters.

The point is that the random effects method can be used on a much smaller sample size than the 
blocking method using fixed effects.
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Mixed models: Random & Fixed Effects
Fixed Effects
– Standard models you are used to. 
– Measure a single fixed effect for each factor level i.e. 1 parameter for each factor level.
– So, if we had 50 people and we want to understand the differences between them we 

need to estimate 50 fixed effects, 1 for each person. Which requires 50 parameters and 
using the rule of thumb of10 observations per parameter means we need a sample size 
of 500.

– If we want to understand the differences between these specific factor levels (e.g. 
people, schools, farms, etc) then they should be a fixed effect.

Random Effects
– Measures each factor levels difference from the overall average using a random

variance e.g. to understand the overall difference of 50 people from their average we 
could use the variance of their 50 differences.

– 1 parameter for all people i.e. their variance. So 1 parameter in total.
– Meaning we need a much smaller sample size (at least 10 as per previous 

slide)
– Usually added to a fixed effects model to make a mixed effects model. Or less often 

used by themselves to partition the variance. 
– Makes the model more accurate by partitioning out the variance associated with this 

factor. 
– If we don’t care about the differences between these specific factor levels (e.g. people, 

schools, farms, etc) and are just using them as a sample then they should often be 
random. In other words, if we can rerun the study using different factor levels and still be 
able to draw the same conclusions, than they are often best fit as random.
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Challenge Question
– A Random effect is a Variance Estimate, and what do you need to 

estimate a Variance?
A) At least 1 data point 
Wrong, since n-1 = 0 and we can’t divide by 0. 

B) At least 2 data points 
Technically correct, BUT it won’t be very stable or accurate. Trying to 
estimate random effects with only 2 datum per observational unit will often 
fail to converge.

C) At least 5 data points
Often stated as the minimum # of observational units for the model to 
converge to a stable result.

D) At least 30 data points 
Often used as the minimum sample size required to invoke the Central Limit 
Theorem to assume averages are normal. However not needed for random 
effects.

E) At least 100 data points 
Don’t need this many
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA): Independence

If we started with a plot that factored in our 
design then we can clearly see the lack of 
independence between the patients and 
treatments. 

Notice how the difference between people 
is much bigger than the effect of the drug? 

The models so far ignore this information.

A Mixed Model that includes person as a 
random effect accounts for this. Effectively 
removing this extra variance and making the 
model more accurate. 

This is a classic example of where mixed 
models out perform those that ignore this 
extra info i.e. when the difference between 
observational units is bigger than the effect 
we are looking for. 

ggplot(data = data6, aes(x=id, y=response, fill=treatment)) +
geom_point(pch=21) +
labs(x="id", y="Cells (μL)")
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA): Independence

But say we hadn’t factored in our 
experimental design like the 
preceding plot, maybe know one 
told us!?

If we followed this workflow we 
would have started with a serial 
plot to consider Independence.

And it would clearly show this 
clustering. 

And if we saw something like this we 
would investigate and then realise it 
was due to the repeated measure 
and this is something we should 
include in our model.

Shows the importance of  the serial 
plot and sticking to a workflow that 
starts with EDA.ggplot(data = data6, aes(x=c(1:nrow(data6)), y=response)) +

geom_point(pch=21, fill="black", size=1) +
labs(x="order", y="Cells/µL")
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Step 1) Pick a suitable model to fit to the data via 
Exploratory Data Analysis (EDA)

Normality and Outliers 
Could be normal, however there does look 
like there might be a bit of a negative skew. 

But as the assumption is the model errors 
are normal, not the response, we aren’t too 
worried about this. But it’s worth 
remembering and paying special attention 
to whether out model errors are normal.

windows()
par(mfrow=c(2,2))
hist(data6$response, main="All Data (Cells/μL)")
hist(data6$response[data6$treatment=="Control"], main="Control only (Cells/μL)")
hist(data6$response[data6$treatment=="Treatment"], main="Treatment only (Cells/μL)")
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Sample Size calculations of repeated measures most 
consider Pseudo Replication.

– Even though we have n=100 this isn’t really a lot of data.

– Keep in mind that we only have 10 subjects, and then 10 
repeated measures on each. So we have a type of pseudo 
replication.

– So using the n=10 per parameter rule even though we have 
n=100 this doesn’t mean we can have 10 subject level 
parameters such as age. With only 10 subjects you’d be hard 
pressed to have even 2 groups with 5 in each.

– Repeated measures might allow us to evaluate more complex 
models with a few parameters for longitudinal measures as 
we have more points to model a line to e.g. white blood 
Cells/µL = virus load + cholesterol. 
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Step 2) Fit the Model

R Code:

lm.mm2 <- lmer(response~treatment + (1|id), data=data6)

Where
treatment ~ is the fixed effect
(1|id) ~ is the random effect representing each person. It is often 
1,2,3,4,5 i.e. 1=1st person, 2=2nd person. BUT must be a categorical 
variable (factor in R), not continuous.
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

Normality  Residuals appear normal.

plot(lm.mm2)

Standard plots we get from the 
R function lmer() to fit the model 
are different to what we get 
when we use lm(), which is what 
we have been using previously.

So we are missing the QQ plot, 
amongst others. 
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Step 3) Check Model Assumptions via Diagnostics: 
Residual Analysis

Normality  Residuals appear normal.

lm.mm2.residuals <- resid(lm.mm2, type="response")
windows()
par(mfrow=c(2,2))
hist(lm.mm2.residuals, main="Histogram of Residuals")
plot(density(lm.mm2.residuals), main="kernel Density plot of Residuals")
rug(lm.mm2.residuals)
qqnorm(lm.mm2.residuals)

Looks pretty good.

Might be a bit of a left skew 
still, but likely not enough to 
worry about.
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Step 4) Goodness of Fit: Residual Analysis

Outliers and unexplained structure or non linearity

par(mfrow=c(2,1))
plot(lm.mm2.predict, resid(lm.mm2, type="response"), main="Predict vs Resid (Response)") # response residuals
abline(h=0, col="red")
plot(data6$response, resid(lm.mm2, type="response"), main="Weight vs Resid (Response)") # response residuals
abline(h=0, col="red")

No evidence of outliers, or unexplained structure 
or non linearity.

Notice the predicted scores are falling out into 20 
discrete vertical patterns of 5 points. This is 
expected since we had 5 repeated measures for 
10 patients over 2 treatments.
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Step 4) Goodness of Fit: Plots and Statistics

NB: comes from the R workflow, which uses slightly different data to what was used here. Included to illustrate the 
type of plot we expect to see.
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Step 5) Interpret Model Parameters and reach a 
conclusion

R CODE and output used to create Tables 
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Step 5) Interpret Model Parameters and reach a 
conclusion

95% Confidence 
Interval

P valueT scoreSEEstimateParameter

Upper 
Bound

Lower 
Bound

523731821.4e-585004209Control ()

609435<2e-161244522Adjustment Treatment ()

250410211580Standard Deviation(SD) 
between patients

257192222Standard Deviation(SD) 
within patients 
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Step 6) Reporting: Overall Conclusion suitable for 
publication

“There is strong evidence to show that the Treatment influences white blood cell 
count (p<2e-16). On average it increases # of white blood cells by between 
435-609 cells/μL (95% CI). This effect has been estimated fairly accurately 

[as 95% CI isn’t too wide].

The population average of white blood cells for a patient is between 3182-
5237 cells/μL (95% CI). This is not a particularly accurate estimate, and is to 

be expected with only 10 people being used to estimate it. 

There was much larger variation between patients (sd=1580) than within 
(sd=222), meaning it was worthwhile partitioning it out for a more accurate 

model.

There were no outliers or unexplained structure. The error was normal” 

When giving a p-value always give an estimate of the effect size as well 
i.e. the 95% CI.
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Was it worth fitting the more complex model?
If we fit a simple ANOVA model like we did previously it shows marginal support that the treatment 
has an impact (treatment p=0.052) while the random model has strong support (p < 2e-16). This is 
because the effect of treatment has been hidden by the noise in the data set (residual=1435), 
while the residual for the random model is much smaller (221.8) meaning it has more power. This is 
because the differences between subjects is included in the fixed effects residual, but is partitioned 
out in the random effects as the id-intercept standard deviation (1579.5). 

So fitting the more complex repeated measures model has shown us something the simpler ANOVA 
model cannot. 

FIXED MODEL

RANDOM MODEL

TAKE HOME
A mixed model can be the difference 

between a p-value low enough to 
publish, and one so high publication is 

not possible (0.05 vs <2e-16).

It does this by reducing the noise 
(dropped from 1435 vs 221.8) and 
making the signal easier to detect 

(which is about the same 56 vs 522).

117

118



19/03/2025

60

Page 119

Was it worth fitting the more complex model?
If we fit a simple ANOVA model like we did previously it shows marginal support that the treatment 
has an impact (treatment p=0.052) while the random model has strong support (p < 2e-16). This is 
because the effect of treatment has been hidden by the noise in the data set (residual=1435), 
while the residual for the random model is much smaller (221.8) meaning it has more power. This is 
because the differences between subjects is included in the fixed effects residual, but is partitioned 
out in the random effects as the id-intercept standard deviation (1579.5). 

So fitting the more complex repeated measures model has shown us something the simpler ANOVA 
model cannot. 

FIXED MODEL

RANDOM MODEL

TAKE HOME
The mixed effects model also estimates 

the treatment effect 6 times more 
accurately with its SE being 44 

compared to the fixed effects 287!

This translates to a much narrower 95% 
CI for the treatment:

Mixed effects 95% CI = [433, 611]
Fixed effects 95% CI  = [-10, 1138]

Mixed effects CI width is 177 vs fixed 
effects 1148.
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Further Reading: Mixed Models Introduction
Online articles, books, journal articles and workshops from the Analysis Factor, with 
many articles by Karen Grace-Martin.
https://www.theanalysisfactor.com/resources/by-topic/mixed-multilevel-models/

Introduction to concepts you need to understand to successfully run a mixed or 
multilevel model: https://www.theanalysisfactor.com/concepts-you-need-to-
understand-to-run-a-mixed-or-multilevel-model/

Random vs Fixed effects https://www.theanalysisfactor.com/specifying-fixed-and-
random-factors-in-mixed-models/

– What is a covariance matrix? And common  covariances structures such as: 
https://www.theanalysisfactor.com/covariance-matrices/
– Compound Symmetry variances are equal to each other, and co-variances are equal to each 

other. Makes sense if it’s the same variable measured in different groups, but not if the 
variables are on different scales.

– Variance Components is when variances differ, and covariances are 0 e.g. 4 different 
unrelated variables have been measured.

– Unstructured Covariance is when all entries can be different.
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Further Reading: Repeated Measures ANOVA vs Mixed 
Models
Six differences between repeated measures ANOVA and Linear Mixed Models 
(LMM’s). 1 big advantage of LMM’s is they handle missing data and 
unbalanced groups much better. https://www.theanalysisfactor.com/six-
differences-between-repeated-measures-anova-and-linear-mixed-models/

The difference between modelling repeated measures (repeated measures 
ANOVA) vs random effects (mixed models). 
https://www.theanalysisfactor.com/mixed-models-repeated-measures-g-side-r-
side/
– Random effects model the random effects covariance matrix known as G 

matrix (aka D matrix).
– Repeated measures model the multiple residuals for each subject using the 

Sigma matrix (aka R or repeated matrix).

How mixed models and repeated measures ANOVA fit unstructured covariance 
matrices https://www.theanalysisfactor.com/unstructured-covariance-matrix-
when-it-does-and-doesn%e2%80%99t-work/
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Further reading: Linear Model III covers

– Random slopes.
– Using the same variable as a fixed and random effect.
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1:25

Page 124

Other Resources
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Further Assistance: Sydney University

SIH
– 1on1 Consults can be requested on our website: 
www.sydney.edu.au/research/facilities/sydney-informatics-hub.html OR Google “Sydney Informatics 
Hub” with the “I’m feeling lucky” button
– Training Sign up to our mailing list to be notified of upcoming training: 

https://signup.e2ma.net/signup/1945889/1928048/
– Research Essentials
– Experimental Design
– Power Analysis

– Online library. Useful links and the most recent version of all our workshops.
– https://sydney-informatics-hub.github.io/stats-resources/

– Hacky Hour
www.sydney.edu.au/research/facilities/sydney-informatics-hub/workshops-and-training/hacky-
hour.html OR Google “Sydney Hacky Hour”

OTHER
– Open Learning Environment (OLE) courses

– Science: OLET5608 Linear Modelling: Exploratory data analysis, sampling, simple linear regression, t-tests 
and confidence intervals. Ability to perform data analytics with coding, basic linear algebra.

– Business: BSTA5007 Linear Models 
– Many others, and constantly changing, so have a look at what is available by getting the list and searching for 

key words such as linear, regression, GLM, ANOVA, etc.
– Linkedin Learning: https://linkedin.com/learning/

– SPSS https://www.linkedin.com/learning/machine-learning-ai-foundations-linear-
regression/welcome?u=2196204
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Other SIH workshops

Linear Models 1: Basic intro to Linear models with a normal (gaussian) 
error. Example workflows for Simple Linear Regression, ANOVA, 
ANCOVA, mixed models.

Linear Models 2: Extends the Linear Model framework introduced in 
LM1 to Generalised Linear Models which allow non normal errors and 
responses. Example workflows for Poisson (Count) and Logistic (Binary) 
regression.

Linear Models 3: Shows how to build interpretable models and analyse 
data to extract insightful & impactful patterns which enable you to 
make the impactful discoveries that expand our knowledge, and how to 
craft engaging research stories to communicate those discoveries.

Model Building: LM workshops use simple 1 or 2 predictor examples. 
More than this requires additional Workflow steps and possibly 
different Methods to account for things like Multi-Collinearity. These 
additional topics are covered in this workshop.
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Linear Models 3: How to build interpretable models and 
analyse data to extract insightful & impactful patterns, and 
craft an engaging research story

Statistical analysis is more than just building the best predictive model, it should also enable you to 
make impactful discoveries that expand our knowledge. Constructing engaging narratives about your 
research is also invaluable as you look to connect with your field, the community and funding bodies. To 
do this you need to build interpretable models, test hypotheses, uncover insightful & impactful patterns, 
and present results in insightful, intuitive and memorable ways. In this workshop we explore tips and 
tricks to make your research do just that. Topics covered will be:
– Building impactful real-world recommendations and guidelines – i) why we need to understand both 

stated and model derived importance, ii) how Quadrant Analysis uses both variable performance 
and importance to develop impactful real-world recommendations and guidelines.

– Reporting tricks that extract insightful & impactful patterns and craft engaging stories – i) establishing 
the importance of a predictor/risk factor, ii) confidence vs prediction intervals, iii) applying and 
correcting for multiple comparisons, iv) testing different hypothesis using different model 
parameterisations of the design matrix, v) interpreting categorical predictors - dummy vs effects 
coding and estimated marginal means, plus other reporting and interpretation tricks.

– Building interpretable models – it’s quite common for researchers to incorrectly use model 
parameters to establish variables ‘impact’ or ‘importance’ . We show how multi-collinearity 
prevents this interpretation, and how to assess and then fix it so parameters can be used to 
identify important predictor/risk factors and other insightful patterns.

– Mixed models – extend the Linear Model 1 intro to: i) better explain how mixed models work, ii) 
use them to test population wide hypotheses outside your sampled groups, and iii) use a random 
slope (with examples of the patterns it can explain and hypotheses it can test).

– Using data visualisation to report complex nonlinear models graphically and aid pattern extraction
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Further Assistance

VIDEOS
• StatsQuest with Josh Starmer

• Linear Models: 
https://www.youtube.com/playlist?list=PLblh5JKOoLUIzaEkCLIUxQFjPIlapw8nU

• What is a Statistical Model https://www.youtube.com/watch?v=yQhTtdq_y9M
• Zedstatistics, longer videos than StatsQuest. https://www.youtube.com/c/zedstatistics

WEBSITES
• R GLMM FAQ https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

BOOKS AND PAPERS
• Faraway, Julian James. (2016) Extending the Linear Model with Rௗ: Generalized Linear, 

Mixed Effects and Nonparametric Regression Models. 
• Fox, John. (2016) Applied Regression Analysis and Generalized Linear Models.
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Tricks to learning – R, linear models, SPSS, etc 
– The trick is doing a little bit everyday and getting really good at it so by 

the time you get to actually needing R you are comfortable in it.

– When working an actual problem let yourself ‘process’ problems overnight. 
I’ve lost count of the time times I have battled for hours only to wake up 
the next day and nail it.

– As tempting as it is. Don’t just google stuff, if you get to know your books 
and references it will give you a broader understanding, which will help 
you in the long run.

– Create an R script with your ‘training code’. So as you read the book jump 
into R and try stuff out. Get used to creating sample data to test stuff out.

– And I’ll leave you with a paraphrased quote from one of the R guru’s 
Hadley Wickham “Frustration is good, it means you’re at the edges of 
your understanding and are learning!!”
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R: Where to start

BOOKS
– Find an intro R book

– Read it a little bit everyday, try and get a routine going such as a little at breakfast, 
before bed, whatever. 

– I like this one for a good intro that includes a lot of statistical methods
– Kabacoff, Robert (2015) R in Action: Data Analysis and Graphics with R. It also has a 

great web page resource which is a good first port of call too
• https://www.statmethods.net/
• Buy through Web site for a discount

– Only downside is that it doesn’t use Hadley Wickhams packages, so I would 
also recommend one of his. In particular R for Data Science gives a great intro 
to data wrangling and visualisation using his packages. (Wickham, Hadley, and 
Garrett Grolemund (2017) R for Data Science Import, Tidy, Transform, 
Visualize, and Model Data)

– Finally I recommend MASS (Modern Applied Statistics with S-Plus) by 
Veneables and Ripley. The ‘Yellow Bible’. It has at least a little bit on pretty 
much any statistical method you can think of. I tend to start here to get an intro 
on what R can do and then research outwards. (Venables, W. N, and B. D Ripley 
(2013) Modern Applied Statistics with S-Plus)

ONLINE 
– Lots of short (and long) YouTube courses

– EXPLORE, find a style you like and watch a little each day if too long.
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Acknowledging SIH

All University of Sydney resources are available to Sydney 
researchers free of charge. The use of the SIH services including the 
Artemis HPC and associated support and training warrants 
acknowledgement in any publications, conference proceedings or 
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The continued acknowledgment of the use of SIH facilities ensures the 
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Suggested wording:
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"The authors acknowledge the technical assistance provided by the Sydney Informatics Hub, 
a Core Research Facility of the University of Sydney."
Acknowledging specific staff:
“The authors acknowledge the technical assistance of (name of staff) of the Sydney 
Informatics Hub, a Core Research Facility of the University of Sydney.”
For further information about acknowledging the Sydney Informatics Hub, please contact 
us at sih.info@sydney.edu.au.
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We value your feedback

– We will email you a link to the survey shortly

– It only takes a few minutes to complete (really!)

– Completing this survey is another way to help us keep 
providing these workshop resources free of charge
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