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set.seed(171974)
project <- "Linear Models II"
version <- "1"
date <- format(Sys.Date(), "%d-%m-%Y")
title <- paste(project, " v", version, " ", date, sep = "")

The title of this project is Linear Models II v1 28-05-2024. The slides for the presentation
accompanying this workflow can be found here.

In this workflow we focus on practical data analysis for two of the more common GLMs: Logis-
tic regression for binary data (using a Binomial distribution); and Poisson/count regression for
count data (using a Poisson distribution). The GLM framework is also described in detail.
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Libraries

Before we delve into the content, it is necessary to load certain libraries (the code
is collapsed here). If you want to use them, please install them beforehand with
install.packages("library_name").

# No warnings
options(warn = -1)

suppressPackageStartupMessages({
library("tibble")
library("magrittr")
library("statmod")
library("ggplot2")
library("emmeans")
library("lme4")
library("lmerTest")
library("gglm")
library("patchwork")
library("haven")
library("gplots")
library("MASS")
library("emmeans")
library("DHARMa")

})

# GGplot theme
theme_set(theme_bw())

Logistic Regression

In this part, we will be exploring Logistic Regression Analysis. Let’s start by creating some
data. This part in code will also be collapsed, but you can always have a look by clicking the
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“Code” button.

set.seed(171974)
success <- 100
failure <- 500
cc1 <- data.frame(lung_cancer = factor(c(rep("Lung Cancer", success), rep("No Lung Cancer", failure))), check.names=FALSE)
cc1$healthy <- ifelse(cc1$lung_cancer=="Lung Cancer", rnorm(success, mean=40, sd=10), rnorm(failure, mean=60, sd=10))
writexl::write_xlsx(cc1, "lung_cancer_dataset.xlsx")

We now have a data.frame object called cc1 with two variables:

• lung_cancer: A binary variable with two categories: Lung Cancer and No Lung Cancer
• healthy: This is a metric variable indicating how healthy a person is. The higher, the

healthier.

Step 1: Exploratory Data Analysis

Let’s first explore this dataset a little and look at the distribution of our dependent variable
categories:

ggplot(cc1, aes(x = lung_cancer)) +
geom_bar(fill = "cornflowerblue", col = "black") +
labs(x = NULL)
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How does it look like if we connect our dependent variable to the explanatory variable healthy?
We are assuming that healthier people have a lower probability of lung cancer. Is this true?

# Plot 1
ggplot(cc1, aes(x = healthy, y = after_stat(density))) +
geom_histogram(fill = "cornflowerblue", col = "black") +

# Plot 2
ggplot(cc1, aes(x = healthy, y = lung_cancer)) +
# geom_violin(alpha=0.4, position = position_dodge(width = .75),size=1,color="black") +
geom_boxplot(

notch = FALSE,
outlier.size = -1,
color = "black",
lwd = 1.2,
alpha = 0.7

) +
labs(x = "Health", y = "Presence of Lung Cancer") +

# Plot 3
ggplot(cc1, aes(x = healthy, y = as.numeric(lung_cancer), col = lung_cancer)) +
geom_point() +
geom_smooth(se = FALSE, col = "red", method = "gam", formula = y ~ s(x, bs = "tp")) +
labs(y = "Numeric lung cancer values", col = NULL) +
theme(legend.position = "bottom") +

# Plot layout
plot_layout(ncol = 2)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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In the above graphs, we see the values of healthy divided up by the categories of lung_cancer,
in separate boxplots (top right). Also, we look at the distribution of health as well as the
numeric dependency (bottom left).

We can indeed see signs of our previous hypothesis. As we have a binary response and a metric
explanatory variable (healthy), a logistic regression analysis is the right way to go. All 3 plots
tells us there are no outliers or other data problems with healthy.

Step 2: Fit Model

We fit the model here. Keep in mind that the “logistic regression” uses a binomial distribution,
which is why we specify that here in the code. The word “logistic” comes from the link function
used to connect explanatory variables to the parameter of interest, the event probability.

cc1$lung_cancer <- relevel(cc1$lung_cancer, ref = "No Lung Cancer")
logistic_reg <- glm(
lung_cancer ~ healthy,
data = cc1,
family = "binomial")
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Step 3: Check model assumptions

Residual Analysis

In generalised linear models, our assumptions are a little different. We don’t have assumptions
for residuals, but we assume that the conditional values of 𝑌 X has a exponential family
distribution (which in this case is the binomial one). As such, our classic five-plot diagnostic
graph is not as informative as in linear models. Let’s have a look anyway:

gglm(logistic_reg, theme = theme_bw()) +
ggplot(data = logistic_reg) +
stat_cooks_obs() +
geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))
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None of these graphs really work for us (except the last one), because they are built on nor-
mality assumptions (which are violated by design), but they are useful to check for outliers.

The package DHARMa can help in this case. It “uses a simulation-based approach to create
readily interpretable scaled (quantile) residuals for fitted (generalized) linear mixed models.”
That means it can tell us how far off our residuals are from what we expect.

Let’s have a look:
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dharma_resids <- simulateResiduals(logistic_reg)
plot(dharma_resids)
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DHARMa residual

DHARMa residuals simulate what the residuals would look like, given the modeling assump-
tions, and then compare them to our actual residuals. They even tell us in the plot whether
there are any issues with the current residuals. According to these plots, our residuals are all
fine.

We can also have a look at the “randomized quantile” residuals, which, according to Cindy
Feng et al. (2020) are very effective in detecting false model specifications:

quantile_res <- qresiduals(logistic_reg)
qqnorm(quantile_res)
abline(0, 1, col = "red")
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Step 4: Goodness of fit

Residual deviance compared to degrees of freedom

Evaluating goodness of fit involves assessing the residual deviance in comparison to degrees of
freedom (DF). While considered a basic GLM test, it’s less effective for binomial and Poisson
families due to the asymptotic nature of the deviance’s Chi-Squared distribution, particularly
challenging for Bernoulli models with 𝑛 = 1 (refer to MASS Section 7.2, page 195, Figure 7.3).
Despite its limitations, this test, detailed in MASS (Section 7.1, page 186), is a good initial
assessment.

A discrepancy in fit may imply issues like missing predictors, outliers, or overdispersion (Far-
away Section 2.11, page 43). Notably, if the deviance is significantly larger, it signals a
potential misspecification in the model, requiring further scrutiny in the assumption testing
phase.

Let’s calculate the metric:

deviance(logistic_reg)

[1] 285.1721

logistic_reg$df.residual
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[1] 598

This looks good!

Test for separation

If any of the standard errors are larger than the coefficient estimates or we are getting any
error messages about a cell being all 0 or 1 then we likely have seperation.

summary(logistic_reg)

Call:
glm(formula = lung_cancer ~ healthy, family = "binomial", data = cc1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.00166 0.97307 9.251 <2e-16 ***
healthy -0.21145 0.02029 -10.422 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 540.67 on 599 degrees of freedom
Residual deviance: 285.17 on 598 degrees of freedom
AIC: 289.17

Number of Fisher Scoring iterations: 6

Also looks good.

Comparison with the Null model

This is a classic test in GLM - we compare the fitted model to a model without any predictor
values, and check whether the model is a significant improvement.

null <- glm(lung_cancer ~ 1, data = cc1, family = binomial)
anova(null, logistic_reg, test = "Chisq")
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Analysis of Deviance Table

Model 1: lung_cancer ~ 1
Model 2: lung_cancer ~ healthy
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 599 540.67
2 598 285.17 1 255.5 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Our fitted model is significantly better than the Null model.

Explained deviance

This is similar to the R-squared in linear regression: % deviance explained.

((deviance(null) - deviance(logistic_reg)) / deviance(null)) * 100

[1] 47.25613

We have about 47% deviance explained, pretty good!

Step 5: Interpret model parameters and reach conclusion

For Simple Linear models we can simply look at the parameter estimate summary and CI’s.
However, in logistic regression these are hard to interpret as they are still on the logit scale.

The only really useful part of this ‘raw’ output is the p-value associated with the parameters.
Which in this case shows strong evidence of being associated with healthy (𝑝 < 2𝑒 − 16).

summary(logistic_reg)

Call:
glm(formula = lung_cancer ~ healthy, family = "binomial", data = cc1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.00166 0.97307 9.251 <2e-16 ***
healthy -0.21145 0.02029 -10.422 <2e-16 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 540.67 on 599 degrees of freedom
Residual deviance: 285.17 on 598 degrees of freedom
AIC: 289.17

Number of Fisher Scoring iterations: 6

The parameters can be made more interpretable by taking their exponential since this turns
them into odds ratios (which is explained in the presentation).

exp(coef(logistic_reg))

(Intercept) healthy
8116.5446454 0.8094061

exp(confint(logistic_reg))

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 1355.6456124 6.237704e+04
healthy 0.7755573 8.400245e-01

We get the above OR=0.81 for the continuous variable Health, which tells us that for each 1
point increase on the Health index the odds of getting lung cancer are 0.8 compared to the
lower score (95%CI = 0.78-0.84).

Refer to the presentation here for more detail.

Step 6: Reporting

There is strong evidence to show that being healthy is associated with lower odds
of Lung Cancer (p<2e-16). For each 1 point increase on the Health index the Odds
of getting lung Cancer are 0.8 compared to the lower score (95%CI odds ratio =
0.79-0.86). This effect on lung cancer has been estimated very accurately [as 95%
CI is quite narrow]
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The model is an acceptable fit to the data with a pseudo R2=45%. There were
no outliers or unexplained structure. The model fit was a GLM with binomial
distribution and logit link function”

Poisson regression

In order to explore this chapter, we have to load a dataset first.

load("tom scat DATA v9 24-11-2017.Rdata")
data2 <- data
data2$BeforeAfter <- relevel(data$BeforeAfter, ref = "After")

The variables of interest in this dataset are

• desert_mouse: A count variable (integer)
• Area_2: A categorical variable with four different levels: Away, Intermediate, Granites,

DBS
• BeforeAfter: A categorical variable with two levels: After, Before

Step 1: Pick a suitable model via EDA

First, we display the dataset graphically:

ggplot(data = data2, aes(x = Area_2, y = desert_mouse, fill = BeforeAfter)) +
geom_point(pch = 21)
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So above is a plot for each of the 4 sites. But it’s not very good since all the scats are overlayed
on each other. Let’s do some random scattering:

ggplot(data = data2, aes(x = Area_2, y = desert_mouse, fill = BeforeAfter)) +
geom_point(pch = 21,

position = position_jitterdodge(jitter.width = 0.4, jitter.height = 0.3))
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In this graph, the observations are separated by both the Area_2 and BeforeAfter categories
and then “jittered” horizontally (and a little vertically as well). This random jitter makes it
easier to observe patterns in the data. We can see that each category has a very different
pattern with regard to their count, but that generally the “After” category has a higher count
value. This pattern is something we can exploit using our Count regression.

Step 2: Fit the model

Let’s fit the model next:

poisson_reg <-
glm(desert_mouse ~ Area_2 * BeforeAfter, data = data2, family = "poisson")

# nb_model <- glm.nb(desert_mouse ~ Area_2 * BeforeAfter, data = data2)

Step 3: Check model assumptions via diagnostics

Zero inflation

Zero inflation in count data occurs when there are too many zeros for a Poisson distribution to
handle, often indicating two underlying processes: the occurrence of an event and the frequency
if it occurs. Testing for zero inflation involves comparing the simulated number of zeros based
on the overall average with the observed data:
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test.0i.theory <- rpois(mean(data2$desert_mouse), n = 10000)
prop.table(table(test.0i.theory)) * 100

test.0i.theory
0 1 2 3 4

69.57 25.18 4.58 0.62 0.05

round(prop.table(table(data2$desert_mouse)) * 100, 2)

0 1 2 3 4 5 6 7 8 9 10
75.87 18.60 2.89 1.18 0.38 0.35 0.24 0.17 0.17 0.07 0.07

The deviations (bigger 0 proportion for our data) may suggest the need for a ZIP model,
though the presented case is not concerning.

Overdispersion

For the same reasons explained in logistic regression Poisson distributions can be over dispersed
i.e. there is too much variance for the single parameter in the Poisson distribution to handle.

We test this using a function from http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#overdispersion.
There is ongoing research on this topic so more recent information and solutions may be
available here.

Function definition here:

overdisp_fun <- function(model) {
rdf <- df.residual(model)
rp <- residuals(model, type = "pearson")
Pearson.chisq <- sum(rp^2)
prat <- Pearson.chisq / rdf
pval <- pchisq(Pearson.chisq, df = rdf, lower.tail = FALSE)
c(chisq = Pearson.chisq, ratio = prat, rdf = rdf, p = pval)

}

overdisp_fun(poisson_reg)

chisq ratio rdf p
4.467379e+03 1.557663e+00 2.868000e+03 9.576844e-74
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This model is only marginally overdispersed.

Residual Analysis

Let’s create our five-plot diagnosis graph:

gglm(poisson_reg, theme = theme_bw()) +
ggplot(data = logistic_reg) +
stat_cooks_obs() +
geom_hline(yintercept = 0.5, linetype = "dashed", col = "red") +
plot_layout(nrow = 2, heights = c(2, 1))
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Due to the discrete-ness of the Poisson distribution, a lot of these plots show vertical lines of
observations. This is to be expected. The “normal QQ” plot is not informative for us, because
we don’t assume a normal distribution of residuals.

Step 4: Goodness of fit

First, we compare the fitted model to our “Null” model, a model without any covariates.

null <- glm(desert_mouse ~ 1, data = data2, family = "poisson")
anova(null, poisson_reg, test = "Chisq")
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Analysis of Deviance Table

Model 1: desert_mouse ~ 1
Model 2: desert_mouse ~ Area_2 * BeforeAfter
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2875 3477.5
2 2868 2743.8 7 733.69 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can see, our model is significantly different from 0. Next, we’ll check our Pseudo 𝑅2 to
see how much variance is explained.

((deviance(null) - deviance(poisson_reg)) / deviance(null)) * 100

[1] 21.09826

21 per cent.

Step 5: Interpret model parameters

First, let’s look at the model output:

summary(poisson_reg)

Call:
glm(formula = desert_mouse ~ Area_2 * BeforeAfter, family = "poisson",

data = data2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.37221 0.04834 -7.700 1.36e-14 ***
Area_2Intermediate 0.55148 0.07844 7.030 2.06e-12 ***
Area_2Granites -0.06716 0.19188 -0.350 0.726340
Area_2DBS -1.59140 0.20977 -7.586 3.29e-14 ***
BeforeAfterBefore -1.99154 0.13312 -14.960 < 2e-16 ***
Area_2Intermediate:BeforeAfterBefore 0.45179 0.16705 2.704 0.006842 **
Area_2Granites:BeforeAfterBefore 0.77146 0.25500 3.025 0.002483 **
Area_2DBS:BeforeAfterBefore 1.47955 0.41292 3.583 0.000339 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3477.5 on 2875 degrees of freedom
Residual deviance: 2743.8 on 2868 degrees of freedom
AIC: 4299.9

Number of Fisher Scoring iterations: 6

We can see that most combinations of categories have a significant effect on the outcome
variable.

Refer to the presentation here for more detail.

Effect size and comparisons

Let’s look at the estimated marginal means (emmeans). Emmeans are a great way to calculate
the predicted average value of the target distribution, given certain covariate combinations.

emm <- emmeans(poisson_reg,
by = "Area_2",
specs = "BeforeAfter",
type = "response"

)
emm

Area_2 = Away:
BeforeAfter rate SE df asymp.LCL asymp.UCL
After 0.6892 0.0333 Inf 0.6269 0.758
Before 0.0941 0.0117 Inf 0.0738 0.120

Area_2 = Intermediate:
BeforeAfter rate SE df asymp.LCL asymp.UCL
After 1.1963 0.0739 Inf 1.0599 1.350
Before 0.2565 0.0205 Inf 0.2194 0.300

Area_2 = Granites:
BeforeAfter rate SE df asymp.LCL asymp.UCL
After 0.6444 0.1197 Inf 0.4478 0.927
Before 0.1902 0.0215 Inf 0.1524 0.238
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Area_2 = DBS:
BeforeAfter rate SE df asymp.LCL asymp.UCL
After 0.1404 0.0286 Inf 0.0941 0.209
Before 0.0841 0.0280 Inf 0.0438 0.162

Confidence level used: 0.95
Intervals are back-transformed from the log scale

Interestingly, the computed expected rates are highly different. Let’s do a marginal mean
comparison graphically and see which categories have the highest expected mean rate.

#were not getting the same result as Chris so before we show this we need to align them
#pairs(emmeans(poisson_reg,
# specs = c("Area_2", "BeforeAfter")
#), transform = "response")

emm_plot <- plot(emm, comparisons = TRUE)
emm_plot
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The plot above shows predicted conditional average values of the target distribution, but
also allows for pairwise comparison. Wherever the red arrows overlap, a significant difference
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between the categories is not present. Where they don’t overlap, we have a significant category
difference on the 𝛼 = 0.05 level. The top and bottom arrows only point into one direction, as
they are the highest and lowest predicted value. Confidence intervals are given in blue (but
not meant for cross comparison). Pairwise compared p values are available with the pairs()
function.

Step 6: Overall conclusion suitable for publication

Because all covariates are categorical variables, the model is essentially a Two-Way ANOVA
model. It therefore makes sense to test each whole effect (and not just the parameters) as well
as the interaction:

anova(poisson_reg, test = "Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: desert_mouse

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 2875 3477.5
Area_2 3 126.67 2872 3350.8 < 2.2e-16 ***
BeforeAfter 1 587.66 2871 2763.1 < 2.2e-16 ***
Area_2:BeforeAfter 3 19.35 2868 2743.8 0.0002316 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both the individual Area_2 and BeforeAfter effects are significantly different from
0 with a p value of 𝑝 < 2.2𝑒−16. The interaction effect is also statistically significant
at 𝑝 < 0.0002316.

The model is a good fit to the data with a pseudo 𝑅2 = 57%. There were no
outliers or unexplained structure.

The model fit was a GLM with Poisson distribution and log link function. There
was little evidence of over dispersion or zero inflation.
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